Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 219: 115932, 2024 01.
Article in English | MEDLINE | ID: mdl-37989413

ABSTRACT

Bitter taste receptors (T2R) are a subfamily of G protein-coupled receptors that enable humans to detect aversive and toxic substances. The ability to discern bitter compounds varies between individuals and is attributed mainly to naturally occurring T2R polymorphisms. T2Rs are also expressed in numerous non-gustatory tissues, including the heart, indicating potential contributions to cardiovascular physiology. In this study. T2Rs that have previously been identified in human cardiac tissues (T2Rs - 10, 14, 30, 31, 46 and 50) and their naturally occurring polymorphisms were functionally characterised. The ligand-dependent signaling responses of some T2R variants were completely abolished (T2R30 Leu252 and T2R46 Met228), whereas other receptor variants had moderate changes in their maximal response, but not potency, relative to wild type. Using a cAMP fluorescent biosensor, we reveal the productive coupling of T2R14, but not the T2R14 Phe201 variant, to endogenous Gαi. Modeling revealed that these variants resulted in altered interactions that generally affected ligand binding (T2R30 Leu252) or Gα protein interactions (T2R46 Met228 and T2R14 Phe201), rather than receptor structural stability. Interestingly, this study is the first to show a difference in signaling for T2R50 Tyr203 (rs1376251) which has been associated with cardiovascular disease. The observation of naturally occurring functional variation in the T2Rs with the greatest expression in the heart is important, as their discovery should prove useful in deciphering the role of T2Rs within the cardiovascular system.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Humans , Taste/physiology , Ligands , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
2.
Front Cell Infect Microbiol ; 11: 714440, 2021.
Article in English | MEDLINE | ID: mdl-34595130

ABSTRACT

People with diabetes mellitus are susceptible to both cardiovascular disease and severe influenza A virus infection. We hypothesized that diabetes also increases risks of influenza-associated cardiac complications. A murine type 1 (streptozotocin-induced) diabetes model was employed to investigate influenza-induced cardiac distress. Lung histopathology and viral titres revealed no difference in respiratory severity between infected control and diabetic mice. However, compared with infected control mice, infected diabetic mice had increased serum cardiac troponin I and creatine-kinase MB, left ventricular structural changes and right ventricular functional alterations, providing the first experimental evidence of type I diabetes increasing risks of influenza-induced cardiovascular complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Diabetes Mellitus, Type 1/complications , Humans , Influenza, Human/complications , Mice , Orthomyxoviridae Infections/complications
3.
Mol Cancer Res ; 19(6): 950-956, 2021 06.
Article in English | MEDLINE | ID: mdl-33811161

ABSTRACT

Treatment for metastatic melanoma includes targeted and/or immunotherapy. Although many patients respond, only a subset has complete response. As late-stage patients often have multiple tumors in difficult access sites, non-invasive techniques are necessary for the development of predictive/prognostic biomarkers. PET/CT scans from 52 patients with stage III/IV melanoma were assessed and CT image parameters were evaluated as prognostic biomarkers. Analysis indicated patients with high standard deviation or high mean of positive pixels (MPP) had worse progression-free survival (P = 0.00047 and P = 0.0014, respectively) and worse overall survival (P = 0.0223 and P = 0.0465, respectively). Whole-exome sequencing showed high MPP was associated with BRAF mutation status (P = 0.0389). RNA-sequencing indicated patients with immune "cold" signatures had worse survival, which was associated with CT biomarker, MPP4 (P = 0.0284). Multiplex immunofluorescence confirmed a correlation between CD8 expression and image biomarkers (P = 0.0028). IMPLICATIONS: CT parameters have the potential to be cost-effective biomarkers of survival in melanoma, and reflect the tumor immune-microenvironment. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/6/950/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/metabolism , Melanoma/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Skin Neoplasms/diagnostic imaging , Humans , Immunotherapy/methods , Kaplan-Meier Estimate , Melanoma/genetics , Melanoma/therapy , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA-Seq/methods , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Tumor Microenvironment/genetics , Exome Sequencing/methods
4.
FASEB J ; 35(3): e21320, 2021 03.
Article in English | MEDLINE | ID: mdl-33660333

ABSTRACT

Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.


Subject(s)
Inflammation/immunology , Influenza A virus , Lung/innervation , Orthomyxoviridae Infections/immunology , Sensory Receptor Cells/immunology , Vagus Nerve/immunology , Animals , Female , Lung/virology , Male , Mice , Mice, Inbred C57BL , Sensory Receptor Cells/metabolism , Transcription, Genetic , Vagus Nerve/metabolism
5.
Elife ; 102021 02 16.
Article in English | MEDLINE | ID: mdl-33588989

ABSTRACT

Influenza virus has a high mutation rate, such that within one host different viral variants can emerge. Evidence suggests that influenza virus variants are more prevalent in pregnant and/or obese individuals due to their impaired interferon response. We have recently shown that the non-allergic, paucigranulocytic subtype of asthma is associated with impaired type I interferon production. Here, we seek to address if this is associated with an increased emergence of influenza virus variants. Compared to controls, mice with paucigranulocytic asthma had increased disease severity and an increased emergence of influenza virus variants. Specifically, PB1 mutations exclusively detected in asthmatic mice were associated with increased polymerase activity. Furthermore, asthmatic host-derived virus led to increased disease severity in wild-type mice. Taken together, these data suggest that at least a subset of patients with asthma may be more susceptible to severe influenza and may be a possible source of new influenza virus variants.


Subject(s)
Asthma/virology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Female , Host-Pathogen Interactions , Male , Mice , Mice, Inbred C57BL , Receptor for Advanced Glycation End Products/deficiency
6.
Clin Infect Dis ; 72(12): e1146-e1153, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33283240

ABSTRACT

The role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains highly controversial. To address this issue, we performed a meta-analysis of the published literature on household SARS-CoV-2 transmission clusters (n = 213 from 12 countries). Only 8 (3.8%) transmission clusters were identified as having a pediatric index case. Asymptomatic index cases were associated with a lower secondary attack in contacts than symptomatic index cases (estimate risk ratio [RR], 0.17; 95% confidence interval [CI], 0.09-0.29). To determine the susceptibility of children to household infections the secondary attack rate in pediatric household contacts was assessed. The secondary attack rate in pediatric household contacts was lower than in adult household contacts (RR, 0.62; 95% CI, 0.42-0.91). These data have important implications for the ongoing management of the COVID-19 pandemic, including potential vaccine prioritization strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Family Characteristics , Humans , Incidence , Pandemics
7.
Elife ; 92020 07 22.
Article in English | MEDLINE | ID: mdl-32697191

ABSTRACT

Diabetes mellitus is a known susceptibility factor for severe influenza virus infections. However, the mechanisms that underlie this susceptibility remain incompletely understood. Here, the effects of high glucose levels on influenza severity were investigated using an in vitro model of the pulmonary epithelial-endothelial barrier as well as an in vivo murine model of type II diabetes. In vitro we show that high glucose conditions prior to IAV infection increased virus-induced barrier damage. This was associated with an increased pro-inflammatory response in endothelial cells and the subsequent damage of the epithelial junctional complex. These results were subsequently validated in vivo. This study provides the first evidence that hyperglycaemia may increase influenza severity by damaging the pulmonary epithelial-endothelial barrier and increasing pulmonary oedema. These data suggest that maintaining long-term glucose control in individuals with diabetes is paramount in reducing the morbidity and mortality associated with influenza virus infections.


Subject(s)
Endothelial Cells/physiology , Epithelial Cells/physiology , Glucose/metabolism , Influenza A virus/physiology , Influenza, Human/virology , Lung/physiopathology , Animals , Disease Models, Animal , Endothelial Cells/virology , Epithelial Cells/virology , Female , Humans , Lung/virology , Male , Mice , Mice, Inbred C57BL
8.
Front Physiol ; 11: 431, 2020.
Article in English | MEDLINE | ID: mdl-32457649

ABSTRACT

The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.

9.
J Infect Dis ; 222(5): 820-831, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32246148

ABSTRACT

BACKGROUND: Influenza A virus (IAV) causes a wide range of extrarespiratory complications. However, the role of host factors in these complications of influenza virus infection remains to be defined. METHODS: Here, we sought to use transcriptional profiling, virology, histology, and echocardiograms to investigate the role of a high-fat diet in IAV-associated cardiac damage. RESULTS: Transcriptional profiling showed that, compared to their low-fat counterparts (LF mice), mice fed a high-fat diet (HF mice) had impairments in inflammatory signaling in the lung and heart after IAV infection. This was associated with increased viral titers in the heart, increased left ventricular mass, and thickening of the left ventricular wall in IAV-infected HF mice compared to both IAV-infected LF mice and uninfected HF mice. Retrospective analysis of clinical data revealed that cardiac complications were more common in patients with excess weight, an association which was significant in 2 out of 4 studies. CONCLUSIONS: Together, these data provide the first evidence that a high-fat diet may be a risk factor for the development of IAV-associated cardiovascular damage and emphasizes the need for further clinical research in this area.


Subject(s)
Diet, High-Fat , Heart Diseases/virology , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections/complications , Animals , Body Mass Index , Body Weight , Cytokines/blood , Cytokines/genetics , Echocardiography , Female , Gene Expression Profiling , Heart/virology , Heart Diseases/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/genetics , Influenza, Human/complications , Interferon Regulatory Factor-7/genetics , Interleukin-1beta/genetics , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/virology , RNA, Viral/metabolism , Risk Factors , Signal Transduction/genetics , Ubiquitins/genetics
10.
mBio ; 11(2)2020 03 24.
Article in English | MEDLINE | ID: mdl-32209691

ABSTRACT

People with diabetes are two times more likely to die from influenza than people with no underlying medical condition. The mechanisms underlying this susceptibility are poorly understood. In healthy individuals, small and short-lived postprandial peaks in blood glucose levels occur. In diabetes mellitus, these fluctuations become greater and more frequent. This glycemic variability is associated with oxidative stress and hyperinflammation. However, the contribution of glycemic variability to the pathogenesis of influenza A virus (IAV) has not been explored. Here, we used an in vitro model of the pulmonary epithelial-endothelial barrier and novel murine models to investigate the role of glycemic variability in influenza severity. In vitro, a history of glycemic variability significantly increased influenza-driven cell death and destruction of the epithelial-endothelial barrier. In vivo, influenza virus-infected mice with a history of glycemic variability lost significantly more body weight than mice with constant blood glucose levels. This increased disease severity was associated with markers of oxidative stress and hyperinflammation both in vitro and in vivo Together, these results provide the first indication that glycemic variability may help drive the increased risk of severe influenza in people with diabetes mellitus.IMPORTANCE Every winter, people with diabetes are at increased risk of severe influenza. At present, the mechanisms that cause this increased susceptibility are unclear. Here, we show that the fluctuations in blood glucose levels common in people with diabetes are associated with severe influenza. These data suggest that glycemic stability could become a greater clinical priority for patients with diabetes during outbreaks of influenza.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 2/complications , Influenza, Human/physiopathology , Severity of Illness Index , Animals , Biomarkers/blood , Cell Death , Cells, Cultured , Coculture Techniques , Diabetes Mellitus, Type 2/blood , Endothelial Cells/immunology , Endothelial Cells/virology , Glycemic Load , Humans , Inflammation , Influenza A virus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/physiopathology , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...