Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nat Commun ; 15(1): 3728, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697991

ABSTRACT

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Radiosurgery , Radiosurgery/methods , Humans , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Male , Female , Middle Aged , Aged , Melanoma/pathology , Adult , Treatment Outcome , Tumor Burden , Aged, 80 and over , Treatment Failure , Retrospective Studies
2.
J Vis Exp ; (205)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38557500

ABSTRACT

Given recent advances in the delivery of novel antitumor therapeutics using endovascular selective intraarterial delivery methods in neuro-oncology, there is an urgent need to develop methods for intracarotid injections in mouse models, including methods to repair the carotid artery in mice after injection to allow for subsequent injections. We developed a method of intracarotid injection in a mouse model to deliver therapeutics into the internal carotid artery (ICA) with two alternative procedures. During injection, the needle is inserted into the common carotid artery (CCA) after tying a suture around the external carotid artery (ECA) and injected therapeutics are delivered into the ICA. Following injection, the common carotid artery (CCA) can be ligated, which limits the number of intracarotid injections to one. The alternative procedure described in this article includes a modification where intracarotid artery injection is followed by injection site repair of the CCA, which restores blood flow within the CCA and avoids the complication of cerebral ischemia seen in some mouse models. We also compared the delivery of bone marrow-derived human mesenchymal stem cells (BM-hMSCs) to intracranial tumors when delivered through intracarotid injection with and without injection site repair following the injection. Delivery of BM-hMSCs does not differ significantly between the methods. Our results demonstrate that injection site repair of the CCA allows for repeat injections through the same artery and does not impair the delivery and distribution of injected material, thus providing a model with greater flexibility that more closely emulates intracarotid injection in humans.


Subject(s)
Brain Ischemia , Brain Neoplasms , Humans , Mice , Animals , Carotid Artery, Internal/surgery , Carotid Artery, Common , Carotid Arteries , Carotid Artery, External
3.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38311852

ABSTRACT

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Subject(s)
Brain Neoplasms , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Mice , Adenoviridae/genetics , Antibodies, Neutralizing , Glioma/therapy , Glioma/pathology , Brain Neoplasms/pathology , Oncolytic Viruses/genetics , Antibodies, Viral , Oligopeptides/therapeutic use
4.
Neurooncol Pract ; 11(1): 92-100, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38222047

ABSTRACT

Background: Electrocorticography (ECoG) language mapping is often performed extraoperatively, frequently involves offline processing, and relationships with direct cortical stimulation (DCS) remain variable. We sought to determine the feasibility and preliminary utility of an intraoperative language mapping approach guided by real-time visualization of electrocorticograms. Methods: A patient with astrocytoma underwent awake craniotomy with intraoperative language mapping, utilizing a dual iPad stimulus presentation system coupled to a real-time neural signal processing platform capable of both ECoG recording and delivery of DCS. Gamma band modulations in response to 4 language tasks at each electrode were visualized in real-time. Next, DCS was conducted for each neighboring electrode pair during language tasks. Results: All language tasks resulted in strongest heat map activation at an electrode pair in the anterior to mid superior temporal gyrus. Consistent speech arrest during DCS was observed for Object and Action naming tasks at these same electrodes, indicating good correspondence with ECoG heat map recordings. This region corresponded well with posterior language representation via preoperative functional MRI. Conclusions: Intraoperative real-time visualization of language task-based ECoG gamma band modulation is feasible and may help identify targets for DCS. If validated, this may improve the efficiency and accuracy of intraoperative language mapping.

5.
J Clin Neurosci ; 118: 147-152, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944358

ABSTRACT

BACKGROUND: There is a paucity of literature regarding the clinical characteristics and management of subependymomas of the fourth ventricle due to their rarity. Here, we describe the operative and non-operative management and outcomes of patients with such tumors. METHODS: This retrospective single-institution case series was gathered after Institutional Review Board (IRB) approval. Patients diagnosed with a subependymoma of the fourth ventricle between 1993 and 2021 were identified. Clinical, radiology and pathology reports along with magnetic resonance imaging (MRI) images were reviewed. RESULTS: Patients identified (n = 20), showed a male predominance (n = 14). They underwent surgery (n = 9) with resection and histopathological confirmation of subependymoma or were followed with imaging surveillance (n = 11). The median age at diagnosis was 51.5 years. Median tumor volume for the operative cohort was 8.64 cm3 and median length of follow-up was 65.8 months. Median tumor volume for the non-operative cohort was 0.96 cm3 and median length of follow-up was 78 months. No tumor recurrence post-resection was noted in the operative group, and no tumor growth from baseline was noted in the non-operative group. Most patients (89 %) in the operative group had symptoms at diagnosis, all of which improved post-resection. No patients were symptomatic in the non-operative group. CONCLUSIONS: Surgical resection is safe and is associated with alleviation of presenting symptoms in patients with large tumors. Observation and routine surveillance are warranted for smaller, asymptomatic tumors.


Subject(s)
Cerebral Ventricle Neoplasms , Glioma, Subependymal , Humans , Male , Middle Aged , Female , Glioma, Subependymal/diagnostic imaging , Glioma, Subependymal/surgery , Fourth Ventricle/diagnostic imaging , Fourth Ventricle/surgery , Fourth Ventricle/pathology , Retrospective Studies , Neoplasm Recurrence, Local , Magnetic Resonance Imaging , Cerebral Ventricle Neoplasms/diagnostic imaging , Cerebral Ventricle Neoplasms/surgery
6.
Front Oncol ; 13: 1071792, 2023.
Article in English | MEDLINE | ID: mdl-37077830

ABSTRACT

Isocitrate dehydrogenase (IDH) mutations are cornerstone diagnostic features in glioma classification. IDH mutations are typically characterized by mutually exclusive amino acid substitutions in the genes encoding for the IDH1 and the IDH2 enzyme isoforms. We report our institutional case of a diffuse astrocytoma with progression to secondary glioblastoma and concurrent IDH1/IDH2 mutations. A 49-year-old male underwent a subtotal resection of a lobular lesion within the right insula in 2013, revealing a WHO grade 3 anaplastic oligoastrocytoma, IDH1 mutated, 1p19q intact. Symptomatic tumor progression was suspected in 2018, leading to a surgical tumor biopsy that demonstrated WHO grade 4 IDH1 and IDH2 mutant diffuse astrocytoma. The patient subsequently underwent surgical resection followed by medical management and finally died in 2021. Although concurrent IDH1/IDH2 mutations have been rarely reported in the current literature, further study is required to better define their impact on patients' prognoses and their response to targeted therapies.

7.
J Neurosurg Case Lessons ; 3(20)2022 May 16.
Article in English | MEDLINE | ID: mdl-36303481

ABSTRACT

BACKGROUND: In patients with perieloquent tumors, neurosurgeons must use a variety of techniques to maximize survival while minimizing postoperative neurological morbidity. Recent publications have shown that conventional anatomical features may not always predict postoperative deficits. Additionally, scientific conceptualizations of complex brain function have shifted toward more dynamic, neuroplastic theories instead of traditional static, localizationist models. Functional imaging techniques have emerged as potential tools to incorporate these advances into modern neurosurgical care. In this case report, we describe our observations using preoperative transcranial magnetic stimulation data combined with tractography to guide a nontraditional surgical approach in a patient with a motor eloquent glioblastoma. OBSERVATIONS: The authors detail the use of preoperative functional and structural imaging to perform a gross total resection despite tumor infiltration of conventionally eloquent anatomical structures. The authors resected the precentral gyrus, specifically the paracentral lobule, localized using intraoperative mapping techniques. The patient demonstrated mild transient postoperative weakness and made a full neurological recovery by discharge 1 week later. LESSONS: Preoperative functional and structural imaging has potential to not only optimize patient selection and surgical planning, but also facilitate important intraoperative decisions. Innovative preoperative imaging techniques should be optimized and used to identify safely resectable structures.

8.
Neurooncol Adv ; 4(1): vdac126, 2022.
Article in English | MEDLINE | ID: mdl-36128584

ABSTRACT

Background: For patients with brain tumors, maximizing the extent of resection while minimizing postoperative neurological morbidity requires accurate preoperative identification of eloquent structures. Recent studies have provided evidence that anatomy may not always predict eloquence. In this study, we directly compare transcranial magnetic stimulation (TMS) data combined with tractography to traditional anatomic grading criteria for predicting permanent deficits in patients with motor eloquent gliomas. Methods: We selected a cohort of 42 glioma patients with perirolandic tumors who underwent preoperative TMS mapping with subsequent resection and intraoperative mapping. We collected clinical outcome data from their chart with the primary outcome being new or worsened motor deficit present at 3 month follow up, termed "permanent deficit". We overlayed the postoperative resection cavity onto the preoperative MRI containing preoperative imaging features. Results: Almost half of the patients showed TMS positive points significantly displaced from the precentral gyrus, indicating tumor induced neuroplasticity. In multivariate regression, resection of TMS points was significantly predictive of permanent deficits while the resection of the precentral gyrus was not. TMS tractography showed significantly greater predictive value for permanent deficits compared to anatomic tractography, regardless of the fractional anisotropic (FA) threshold. For the best performing FA threshold of each modality, TMS tractography provided both higher positive and negative predictive value for identifying true nonresectable, eloquent cortical and subcortical structures. Conclusion: TMS has emerged as a preoperative mapping modality capable of capturing tumor induced plastic reorganization, challenging traditional presurgical imaging modalities.

9.
CA Cancer J Clin ; 72(5): 454-489, 2022 09.
Article in English | MEDLINE | ID: mdl-35708940

ABSTRACT

Brain metastases are a challenging manifestation of renal cell carcinoma. We have a limited understanding of brain metastasis tumor and immune biology, drivers of resistance to systemic treatment, and their overall poor prognosis. Current data support a multimodal treatment strategy with radiation treatment and/or surgery. Nonetheless, the optimal approach for the management of brain metastases from renal cell carcinoma remains unclear. To improve patient care, the authors sought to standardize practical management strategies. They performed an unstructured literature review and elaborated on the current management strategies through an international group of experts from different disciplines assembled via the network of the International Kidney Cancer Coalition. Experts from different disciplines were administered a survey to answer questions related to current challenges and unmet patient needs. On the basis of the integrated approach of literature review and survey study results, the authors built algorithms for the management of single and multiple brain metastases in patients with renal cell carcinoma. The literature review, consensus statements, and algorithms presented in this report can serve as a framework guiding treatment decisions for patients. CA Cancer J Clin. 2022;72:454-489.


Subject(s)
Brain Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Brain Neoplasms/therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Combined Modality Therapy , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy
10.
Front Oncol ; 12: 847110, 2022.
Article in English | MEDLINE | ID: mdl-35359380

ABSTRACT

Brain metastasis is the most common type of intracranial tumor. The contemporary management of brain metastasis is a challenging issue and traditionally has carried a poor prognosis as these lesions typically occur in the setting of advanced cancer. However, improvement in systemic therapy, advances in radiation techniques and multimodal therapy tailored to the individual patient, has given hope to this patient population. Surgical resection has a well-established role in the management of brain metastasis. Here we discuss the evolving role of surgery in the treatment of this diverse patient population.

11.
Sci Rep ; 12(1): 5386, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354845

ABSTRACT

Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.


Subject(s)
Brain Neoplasms , Microcephaly , Brain Neoplasms/genetics , Child , Child, Preschool , DNA Repair/genetics , DNA Repair Enzymes/metabolism , Humans , Male , Microcephaly/genetics , Mutation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Seizures/genetics
12.
J Neurointerv Surg ; 14(6): 533-538, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34824133

ABSTRACT

BACKGROUND: Survival for glioblastoma remains very poor despite decades of research, with a 5-year survival of only 5%. The technological improvements that have revolutionized treatment of ischemic stroke and brain aneurysms have great potential in providing more precise and selective delivery of cancer therapeutic agents to brain tumors. METHODS: We describe for the first time the use of perfusion guidance to enhance the precision of endovascular super-selective intra-arterial (ESIA) infusions of mesenchymal stem cells loaded with Delta-24 (MSC-D24) in the treatment of glioblastoma (NCT03896568). RESULTS: MRI imaging, which best defines the location of the tumor, is co-registered and fused with the patient's position using cone beam CT, resulting in optimal vessel selection and confirmation of targeted delivery through volumetric perfusion imaging. CONCLUSIONS: This technique of perfusion guided-ESIA injections (PG-ESIA) enhances our ability to perform targeted super-selective delivery of therapeutic agents for brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Glioblastoma/therapy , Humans , Infusions, Intra-Arterial/methods , Injections, Intra-Arterial , Perfusion
13.
Anticancer Res ; 41(11): 5333-5342, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34732403

ABSTRACT

BACKGROUND/AIM: Leptomeningeal disease (LMD) is a debilitating complication of advanced malignancies. Immune-checkpoint inhibitors (ICIs) may alter disease course. We analyzed the role and toxicity of ICIs in LMD. MATERIALS AND METHODS: We systematically reviewed the literature reporting on outcome data of patients with LMD treated with ICIs. RESULTS: We included 14 studies encompassing 61 patients. Lung-cancer (44.3%), breast-cancer (27.9%), and melanoma (23.0%) were the most frequent primary tumors. Median duration of ICI-treatment was 7-months (range=0.5-58.0): pembrolizumab (49.2%), nivolumab (32.8%), ipilimumab (18.0%). Radiological responses included complete response (33.3%), partial response (12.5%), stable disease (33.3%), progressive disease (20.8%). Twenty-two patients developed ICI-related adverse-events, mild (100%) and/or severe (15.6%). Median progression-free and overall survival were 5.1 and 6.3 months, and 12-month survival was 32.1%. Survival correlated with ICI agents (p=0.042), but not with primary tumors (p=0.144). Patients receiving concurrent steroids showed worse survival (p=0.040). CONCLUSION: ICI therapy is well-tolerated in patients with LMD, but concurrent steroids may worsen survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Meningeal Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Disease Progression , Female , Humans , Immune Checkpoint Inhibitors/adverse effects , Male , Meningeal Neoplasms/immunology , Meningeal Neoplasms/mortality , Meningeal Neoplasms/secondary , Middle Aged , Progression-Free Survival , Risk Assessment , Risk Factors , Steroids/adverse effects , Time Factors , Tumor Microenvironment
14.
J Neurooncol ; 155(2): 155-163, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34613581

ABSTRACT

PURPOSE: Desmoplastic infantile astrocytoma (DIA) and desmoplastic infantile ganglioglioma (DIG) are classified together as grade I neuronal and mixed neuronal-glial tumor of the central nervous system by the World Health Organization (WHO). These tumors are rare and have not been well characterized in terms of clinical outcomes. We aimed to identify clinical predictors of mortality and tumor recurrence/progression by performing an individual patient data meta-analysis (IPDMA) of the literature. METHODS: A systematic literature review from 1970 to 2020 was performed, and individualized clinical data for patients diagnosed with DIA/DIG were extracted. Aggregated data were excluded from collection. Outcome measures of interest were mortality and tumor recurrence/progression, as well as time-to-event (TTE) for each of these. Participants without information on these outcome measures were excluded. Cox regression survival analyses were performed to determine predictors of mortality and tumor recurrence / progression. RESULTS: We identified 98 articles and extracted individual patient data from 188 patients. The cohort consisted of 58.9% males with a median age of 7 months. The majority (68.1%) were DIGs, while 24.5% were DIAs and 7.5% were non-specific desmoplastic infantile tumors; DIAs presented more commonly in deep locations (p = 0.001), with leptomeningeal metastasis (p = 0.001), and was associated with decreased probability of gross total resection (GTR; p = 0.001). Gender, age, and tumor pathology were not statistically significant predictors of either mortality or tumor recurrence/progression. On multivariate survival analysis, GTR was a predictor of survival (HR = 0.058; p = 0.007) while leptomeningeal metastasis at presentation was a predictor of mortality (HR = 3.27; p = 0.025). Deep tumor location (HR = 2.93; p = 0.001) and chemotherapy administration (HR = 2.02; p = 0.017) were associated with tumor recurrence/progression. CONCLUSION: Our IPDMA of DIA/DIG cases reported in the literature revealed that GTR was a predictor of survival while leptomeningeal metastasis at presentation was associated with mortality. Deep tumor location and chemotherapy were associated with tumor recurrence / progression.


Subject(s)
Astrocytoma , Brain Neoplasms , Ganglioglioma , Neoplasm Recurrence, Local , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Ganglioglioma/mortality , Ganglioglioma/pathology , Humans , Infant , Male , Meningeal Carcinomatosis/mortality , Neoplasm Recurrence, Local/epidemiology
15.
Neurosurg Focus ; 50(2): E6, 2021 02.
Article in English | MEDLINE | ID: mdl-33524949

ABSTRACT

Delta-24-based oncolytic viruses are conditional replication adenoviruses developed to selectively infect and replicate in retinoblastoma 1 (Rb)-deficient cancer cells but not normal cell with intact Rb1 pathways. Over the years, there has been a significant evolution in the design of Delta-24 based on a better understanding of the underlying basis for infection, replication, and spread within cancer. One example is the development of Delta-24-RGD (DNX-2401), where the arginine-glycine-aspartate (RGD) domain enhances the infectivity of Delta-24 for cancer cells. DNX-2401 demonstrated objective biological and clinical responses during a phase I window of opportunity clinical trial for recurrent human glioblastoma. In long-term responders (> 3 years), there was evidence of immune infiltration (T cells and macrophages) into the tumor microenvironment with minimal toxicity. Although more in-depth analysis and phase III studies are pending, these results indicate that Delta-24-based adenovirus therapy may induce an antitumor response in glioblastoma, resulting in long-term antitumor immune response. In this review, the authors discuss the preclinical and clinical development of Delta-24 oncolytic adenoviral therapy for glioblastoma and describe structural improvements to Delta-24 that have enhanced its efficacy in vivo. They also highlight ongoing research that attempts to address the remaining obstacles limiting efficacy of Delta-24 adenovirus therapy for glioblastoma.


Subject(s)
Glioblastoma , Oncolytic Virotherapy , Oncolytic Viruses , Adenoviridae/genetics , Cell Line, Tumor , Glioblastoma/therapy , Humans , Neoplasm Recurrence, Local , Oncolytic Viruses/genetics , Tumor Microenvironment
16.
Oper Neurosurg (Hagerstown) ; 20(6): E436, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33548927

ABSTRACT

Basilar tip aneurysm clipping is technically challenging because of the depth of operative corridor, rarity in presentation, and important perforators supplying deep, critical structures. Two major approaches to basilar tip aneurysms include (1) a frontotemporal (transorbital) trans-sylvian approach for most aneurysms and (2) a modified subtemporal approach for aneurysms with low-lying necks. A 53-yr-old woman presented to our institution with a large unruptured basilar tip aneurysm notable for a low, broad neck (6.4 mm). After discussion of risks and benefits of endovascular vs surgical options, the patient consented to operative intervention. She underwent a right frontotemporal craniotomy with zygomatic osteotomy, intradural petrous apicectomy, elective sectioning of the fourth cranial nerve (CN IV), and intracavernous removal of the dorsum sellae and posterior clinoid process to provide more space for aneurysm dissection. After temporary clipping of the basilar artery, the perforating arteries were dissected free from the aneurysm and the aneurysm occluded with 2 fenestrated clips. Important technical nuances of the approach include (1) achieving ample working room for temporary occlusion aneurysm dissection, (2) careful dissection of the perforators and contralateral P1, and (3) utilization of 2 fenestrated clips to accommodate and preserve the ipsilateral P1 segment. Postoperative angiogram showed complete aneur-ysmal occlusion. Postoperatively, the patient demonstrated mild cognitive impairment and a right CN IV palsy. At 6-wk follow-up, cognition recovered to normalcy. More recently, at 12-mo follow-up, the patient noted intermittent diplopia. Formal neuro-ophthalmologic assessment confirmed persistence of a CN IV palsy treated with prism lenses but no other neurological deficits.


Subject(s)
Intracranial Aneurysm , Basilar Artery/surgery , Craniotomy , Female , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Sella Turcica , Surgical Instruments
17.
Neurosurg Clin N Am ; 32(1): 93-104, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33223031

ABSTRACT

Despite significant improvement in understanding of molecular underpinnings driving glioblastoma, there is minimal improvement in overall survival of patients. This poor outcome is caused in part by traditional designs of early phase clinical trials, which focus on clinical assessments of drug toxicity and response. Window of opportunity trials overcome this shortcoming by assessing drug-induced on-target molecular alterations in post-treatment human tumor specimens. This article provides an overview of window of opportunity trials, including novel designs for incorporating biologic end points into early stage trials in context of brain tumors, and examples of successfully executed window of opportunity trials for glioblastoma.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Drug Evaluation/methods , Glioblastoma/diagnosis , Glioblastoma/therapy , Biomarkers, Tumor , Clinical Trials as Topic , Endpoint Determination , Humans
18.
Neurooncol Adv ; 2(1): vdaa132, 2020.
Article in English | MEDLINE | ID: mdl-33241214

ABSTRACT

BACKGROUND: Fusion genes form as a result of abnormal chromosomal rearrangements linking previously separate genes into one transcript. The FGFR3-TACC3 fusion gene (F3-T3) has been shown to drive gliomagenesis in glioblastoma (GBM), a cancer that is notoriously resistant to therapy. However, successful targeting of F3-T3 via small molecular inhibitors has not revealed robust therapeutic responses, and specific targeting of F3-T3 has not been achieved heretofore. Here, we demonstrate that depleting F3-T3 using custom siRNA to the fusion breakpoint junction results in successful inhibition of F3-T3+ GBMs, and that exosomes can successfully deliver these siRNAs. METHODS: We engineered 10 unique siRNAs (iF3T3) that specifically spanned the most common F3-T3 breakpoint with varying degrees of overlap, and assayed depletion by qPCR and immunoblotting. Cell viability assays were performed. Mesenchymal stem cell-derived exosomes (UC-MSC) were electroporated with iF3T3, added to cells, and F3-T3 depletion measured by qPCR. RESULTS: We verified that depleting F3-T3 using shRNA to FGFR3 resulted in decreased cell viability and improved survival in glioma-bearing mice. We then demonstrated that 7/10 iF3T3 depleted F3-T3, and importantly, did not affect levels of wild-type (WT) FGFR3 or TACC3. iF3T3 decreased cell viability in both F3T3+ GBM and bladder cancer cell lines. UC-MSC exosomes successfully delivered iF3T3 in vitro, resulting in F3-T3 depletion. CONCLUSION: Targeting F3-T3 using siRNAs specific to the fusion breakpoint is capable of eradicating F3T3+ cancers without toxicity related to inhibition of WT FGFR3 or TACC3, and UC-MSC exosomes may be a plausible vehicle to deliver iF3T3.

19.
Neurosurg Focus ; 49(4): E11, 2020 10.
Article in English | MEDLINE | ID: mdl-33002863

ABSTRACT

Glioblastoma (GBM) is the most common type of malignant primary brain tumor in adults. It is a uniformly fatal disease (median overall survival 16 months) even with aggressive resection and an adjuvant temozolomide-based chemoradiation regimen. Age remains an independent risk factor for a poor prognosis. Several factors contribute to the dismal outcomes in the elderly population with GBM, including poor baseline health status, differences in underlying genomic alterations, and variability in the surgical and medical management of this subpopulation. The latter arises from a lack of adequate representation of elderly patients in clinical trials, resulting in limited data on the response of this subpopulation to standard treatment. Results from retrospective and some prospective studies have indicated that resection of only contrast-enhancing lesions and administration of hypofractionated radiotherapy in combination with temozolomide are effective strategies for optimizing survival while maintaining baseline quality of life in elderly GBM patients; however, survival remains dismal relative to that in a younger cohort. Here, the authors present historical context for the current strategies used for the multimodal management (surgical and medical) of elderly patients with GBM. Furthermore, they provide insights into elderly GBM patient-specific genomic signatures such as isocitrate dehydrogenase 1/2 (IDH1/2) wildtype status, telomerase reverse transcriptase promoter (TERTp) mutations, and somatic copy number alterations including CDK4/MDM2 coamplification, which are becoming better understood and could be utilized in a clinical trial design and patient stratification to guide the development of more effective adjuvant therapies specifically for elderly GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Clinical Decision-Making , Genomics , Glioblastoma/genetics , Glioblastoma/surgery , Humans , Prognosis , Prospective Studies , Quality of Life , Retrospective Studies
20.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33115946

ABSTRACT

BACKGROUND: Though currently approved immunotherapies, including chimeric antigen receptor T cells and checkpoint blockade antibodies, have been successfully used to treat hematological and some solid tumor cancers, many solid tumors remain resistant to these modes of treatment. In solid tumors, the development of effective antitumor immune responses is hampered by restricted immune cell infiltration and an immunosuppressive tumor microenvironment (TME). An immunotherapy that infiltrates and persists in the solid TME, while providing local, stable levels of therapeutic to activate or reinvigorate antitumor immunity could overcome these challenges faced by current immunotherapies. METHODS: Using lentivirus-driven engineering, we programmed human and murine macrophages to express therapeutic payloads, including Interleukin (IL)-12. In vitro coculture studies were used to evaluate the effect of genetically engineered macrophages (GEMs) secreting IL-12 on T cells and on the GEMs themselves. The effects of IL-12 GEMs on gene expression profiles within the TME and tumor burden were evaluated in syngeneic mouse models of glioblastoma and melanoma and in human tumor slices isolated from patients with advanced gastrointestinal malignancies. RESULTS: Here, we present a cellular immunotherapy platform using lentivirus-driven genetic engineering of human and mouse macrophages to constitutively express proteins, including secreted cytokines and full-length checkpoint antibodies, as well as cytoplasmic and surface proteins that overcomes these barriers. GEMs traffic to, persist in, and express lentiviral payloads in xenograft mouse models of glioblastoma, and express a non-signaling truncated CD19 surface protein for elimination. IL-12-secreting GEMs activated T cells and induced interferon-gamma (IFNγ) in vitro and slowed tumor growth resulting in extended survival in vivo. In a syngeneic glioblastoma model, IFNγ signaling cascades were also observed in mice treated with mouse bone-marrow-derived GEMs secreting murine IL-12. These findings were reproduced in ex vivo tumor slices comprised of intact MEs. In this setting, IL-12 GEMs induced tumor cell death, chemokines and IFNγ-stimulated genes and proteins. CONCLUSIONS: Our data demonstrate that GEMs can precisely deliver titratable doses of therapeutic proteins to the TME to improve safety, tissue penetrance, targeted delivery and pharmacokinetics.


Subject(s)
Genetic Engineering/methods , Immunotherapy/methods , Macrophages/metabolism , Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...