Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Biophys Rev ; 15(4): 515-530, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681092

ABSTRACT

Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.

2.
Protein Sci ; 32(6): e4649, 2023 06.
Article in English | MEDLINE | ID: mdl-37159024

ABSTRACT

ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of ß-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 µm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.


Subject(s)
Insulin , Proinsulin , Insulin/chemistry , Proinsulin/analysis , Proinsulin/chemistry , Proinsulin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/analysis , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Secretory Vesicles/chemistry , Secretory Vesicles/metabolism
3.
Curr Res Struct Biol ; 4: 285-307, 2022.
Article in English | MEDLINE | ID: mdl-36164646

ABSTRACT

Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.

4.
J Struct Biol ; 213(1): 107675, 2021 03.
Article in English | MEDLINE | ID: mdl-33278583

ABSTRACT

Isolated or as a part of multidomain proteins, Sterol Carrier Protein 2 (SCP2) exhibits high affinity and broad specificity for different lipidic and hydrophobic compounds. A wealth of structural information on SCP2 domains in all forms of life is currently available; however, many aspects of its ligand binding activity are poorly understood. ylSCP2 is a well-characterized single domain SCP2 from the yeast Yarrowia lipolytica. Herein, we report the X-ray structure of unliganded ylSCP2 refined to 2.0 Å resolution. Comparison with the previously solved liganded ylSCP2 structure unveiled a novel mechanism for binding site occlusion. The liganded ylSCP2 binding site is a large cavity with a volume of more than 800 Å3. In unliganded ylSCP2 the binding site is reduced to about 140 Å3. The obliteration is caused by a swing movement of the C-terminal α helix 5 and a subtle compaction of helices 2-4. Previous pairwise comparisons were between homologous SCP2 domains with a uncertain binding status. The reported unliganded ylSCP2 structure allows for the first time a fully controlled comparative analysis of the conformational effects of ligand occupation dispelling several doubts regarding the architecture of SCP2 binding site.


Subject(s)
Binding Sites/physiology , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Protein Binding/physiology , Yarrowia/metabolism , Ligands , Lipids/chemistry , Protein Domains/physiology
5.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140361, 2020 03.
Article in English | MEDLINE | ID: mdl-31923589

ABSTRACT

SEA domains are ubiquitous in large proteins associated with highly glycosylated environments. Certain SEA domains undergo intramolecular proteolysis involving a nucleophilic attack of a serine hydroxyl group on the preceding glycine carbonyl. The mucin-1 (MUC1) SEA domain has been extensively investigated as a model of intramolecular proteolysis. Since neither a general base, a general acid, nor an oxyanion hole could be identified in MUC1 SEA, it has been suggested that proteolysis is accelerated by a non-planarity of the scissile peptide bond imposed by protein folding. A reactant distorted peptide bond has been also invoked to explain the autoproteolysis of several unrelated proteins. However, the only evidence of peptide distortion in MUC1 SEA stems from molecular dynamic simulations of the reactant modeled upon a single NMR structure of the cleaved product. We report the first high-resolution X-ray structure of cleaved MUC1 SEA. Structural comparison with uncleaved SEA domains suggests that the number of residues evolutionarily inserted in the cleaved loop of MUC1 SEA precludes the formation of a properly hydrogen-bonded beta turn. By sequence analysis, we show that this conformational frustration is shared by all known cleaved SEA domains. In addition, alternative conformations of the uncleaved precursor could be modeled in which the scissile peptide bond is planar. The implications of these structures for autoproteolysis are discussed in the light of the previous research on autoproteolysis.


Subject(s)
Mucin-1/chemistry , Crystallography, X-Ray , Models, Molecular , Mucin-1/metabolism , Protein Domains , Proteolysis
6.
J Biol Chem ; 294(21): 8564-8576, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30979722

ABSTRACT

Type 1 diabetes islet cell autoantigen 512 (ICA512/IA-2) is a tyrosine phosphatase-like intrinsic membrane protein involved in the biogenesis and turnover of insulin secretory granules (SGs) in pancreatic islet ß-cells. Whereas its membrane-proximal and cytoplasmic domains have been functionally and structurally characterized, the role of the ICA512 N-terminal segment named "regulated endocrine-specific protein 18 homology domain" (RESP18HD), which encompasses residues 35-131, remains largely unknown. Here, we show that ICA512 RESP18HD residues 91-131 encode for an intrinsically disordered region (IDR), which in vitro acts as a condensing factor for the reversible aggregation of insulin and other ß-cell proteins in a pH and Zn2+-regulated fashion. At variance with what has been shown for other granule cargoes with aggregating properties, the condensing activity of ICA512 RESP18HD is displayed at a pH close to neutral, i.e. in the pH range found in the early secretory pathway, whereas it is resolved at acidic pH and Zn2+ concentrations resembling those present in mature SGs. Moreover, we show that ICA512 RESP18HD residues 35-90, preceding the IDR, inhibit insulin fibrillation in vitro Finally, we found that glucose-stimulated secretion of RESP18HD upon exocytosis of SGs from insulinoma INS-1 cells is associated with cleavage of its IDR, conceivably to prevent its aggregation upon exposure to neutral pH in the extracellular milieu. Taken together, these findings point to ICA512 RESP18HD being a condensing factor for protein sorting and granulogenesis early in the secretory pathway and for prevention of amyloidogenesis.


Subject(s)
Amyloid/metabolism , Insulin/metabolism , Intrinsically Disordered Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Amyloid/genetics , Animals , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Insulin/genetics , Intrinsically Disordered Proteins/genetics , Nerve Tissue Proteins/genetics , Rats , Receptor-Like Protein Tyrosine Phosphatases, Class 8/genetics , Zinc/metabolism
7.
Eur Biophys J ; 48(4): 341-348, 2019 May.
Article in English | MEDLINE | ID: mdl-30929094

ABSTRACT

[Formula: see text]-Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A [Formula: see text]-lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp[Formula: see text]Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis. The Trp[Formula: see text]Phe substitutions had little impact on the native conformation, but changed the properties of the partially folded states populated at equilibrium. The results were interpreted in the framework of modern theories of protein folding.


Subject(s)
Bacillus licheniformis/enzymology , Protein Folding , beta-Lactamases/chemistry , Models, Molecular , Protein Domains , Protein Unfolding/drug effects , Urea/pharmacology
8.
Biochim Biophys Acta Proteins Proteom ; 1866(11): 1143-1152, 2018 11.
Article in English | MEDLINE | ID: mdl-30282612

ABSTRACT

Sterol carrier protein 2 (SCP2) binds lipids with high affinity and broad specificity. The overall hydrophobicity, fluidity, and dipolar dynamics of the binding site of SCP2 from Yarrowia lipolytica were characterized using the environmentally-sensitive fluorescent probe Laurdan. The study revealed a binding site with an overall polarity similar to that of dichloromethane and an internal phase comparable to that of phospholipid membranes with coexisting solid-ordered and liquid-crystalline states. The fluorescence properties of bound Laurdan also revealed that the binding site of SCP2 can accommodate competitively more than one ligand, with micro and nanomolar dissociation constants. The much higher affinity for the second than for the first ligand implies that the most prominent SCP2 species in the cellular context are those occupied by two ligands. Thus SCP2 may carry a highly populated lipid in the background and a second one, specific for the functional purpose of SCP2. Our findings are important for the characterization of SCP2 biological functions and the design of specific inhibitors.


Subject(s)
2-Naphthylamine/analogs & derivatives , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Laurates/metabolism , 2-Naphthylamine/metabolism , Binding Sites , Hydrophobic and Hydrophilic Interactions , Methylene Chloride , Models, Molecular , Phospholipids/metabolism , Protein Binding , Yarrowia/metabolism
9.
Biophys Chem ; 230: 36-44, 2017 11.
Article in English | MEDLINE | ID: mdl-28843429

ABSTRACT

A statistical analysis of circa 20,000 X-ray structures evidenced the effects of temperature of data collection on protein intramolecular distances and degree of compaction. Identical chains with data collected at cryogenic ultralow temperatures (≤160K) showed a radius of gyration (Rg) significantly smaller than at moderate temperatures (≥240K). Furthermore, the analysis revealed the existence of structures with a Rg significantly smaller than expected for cryogenic temperatures. In these ultracompact cases, the unusually small Rg could not be specifically attributed to any experimental parameter or crystal features. Ultracompaction involves most atoms and results in their displacement toward the center of the molecule. Ultracompact structures on average have significantly shorter van der Waals and hydrogen bonds than expected for ultralow temperature structures. In addition, the number of van der Waals contacts was larger in ultracompact than in ultralow temperature structures. The structure of these ultracompact states was analyzed in detail and the implication and possible causes of the phenomenon are discussed.


Subject(s)
Proteins/chemistry , Animals , Cattle , Chymotrypsin/chemistry , Cyclins/chemistry , Databases, Protein , Factor VII/chemistry , HLA-DR Antigens/chemistry , Humans , Hydrogen Bonding , Protein Structure, Tertiary , Static Electricity , Temperature , Trypsin/chemistry , beta 2-Microglobulin/chemistry
10.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 565-577, 2017 May.
Article in English | MEDLINE | ID: mdl-28284963

ABSTRACT

Sterol Carrier Protein 2 (SCP2) has been associated with lipid binding and transfer activities. However, genomic, proteomic, and structural studies revealed that it is an ubiquitous domain of complex proteins with a variety functions in all forms of life. High-resolution structures of representative SCP2 domains are available, encouraging a comprehensive review of the structural basis for its success. Most SCP2 domains pertain to three major families and are frequently found as stand-alone or at the C-termini of lipid related peroxisomal enzymes, acetyltransferases causing bacterial resistance, and bacterial environmentally important sulfatases. We (1) analyzed the structural basis of the fold and the classification of SCP2 domains; (2) identified structure-determined sequence features; (3) compared the lipid binding cavity of SCP2 and other lipid binding proteins; (4) surveyed proposed mechanisms of SCP2 mediated lipid transfer between membranes; and (5) uncovered a possible new function of the SCP2 domain as a protein-protein recognition device.


Subject(s)
Carrier Proteins/chemistry , Lipids/chemistry , Sterols/chemistry , Carrier Proteins/metabolism , Humans , Peroxisomes/enzymology , Protein Binding , Protein Domains , Protein Folding , Protein Interaction Maps , Proteomics
11.
Mol Cell Endocrinol ; 436: 130-40, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27431015

ABSTRACT

Ghrelin is an octanoylated peptide hormone that plays a key role in the regulation of the body weight and glucose homeostasis. In plasma, ghrelin circulates bound to larger proteins whose identities are partially established. Here, we used size exclusion chromatography, mass spectrometry and isothermal titration microcalorimetry to show that ghrelin interacts with serum albumin. Furthermore, we found that such interaction displays an estimated dissociation constant (KD) in the micromolar range and involves albumin fatty-acid binding sites as well as the octanoyl moiety of ghrelin. Notably, albumin-ghrelin interaction reduces the spontaneous deacylation of the hormone. Both in vitro experiments-assessing ghrelin ability to inhibit calcium channels-and in vivo studies-evaluating ghrelin orexigenic effects-indicate that the binding to albumin affects the bioactivity of the hormone. In conclusion, our results suggest that ghrelin binds to serum albumin and that this interaction impacts on the biological activity of the hormone.


Subject(s)
Ghrelin/metabolism , Serum Albumin/metabolism , Amino Acid Sequence , Animals , Calorimetry , Chromatography, Gel , Ghrelin/chemistry , Humans , Mice , Protein Binding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Biochim Biophys Acta ; 1864(5): 511-22, 2016 May.
Article in English | MEDLINE | ID: mdl-26836020

ABSTRACT

BACKGROUND: ICA512 (or IA-2/PTPRN) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Previous studies implied its involvement in generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in ß-cell proliferation. While several ICA512 domains have been characterized, the function and structure of a large portion of its N-terminal extracellular (or lumenal) region are unknown. Here, we report a biophysical, biochemical, and functional characterization of ICA512-RESP18HD, a domain comprising residues 35 to 131 and homologous to regulated endocrine-specific protein 18 (RESP18). METHODS: Pure recombinant ICA512-RESP18HD was characterized by CD and fluorescence. Its binding to insulin and proinsulin was characterized by ELISA, surface plasmon resonance, and fluorescence anisotropy. Thiol reactivity was measured kinetically. Targeting of ΔRESP18HD ICA512-GFP to the membrane of insulinoma cells was monitored by immunofluorescence. RESULTS: ICA512-RESP18HD possesses a strong tendency to aggregate and polymerize via intermolecular disulfide formation, particularly at pH>4.5. Its cysteine residues are highly susceptible to oxidation forming an intramolecular disulfide between cysteine 53 and 62 and intermolecular disulfides via cysteine 40 and cysteine 47. The regulated sorting of ICA512 to secretory granules in INS-1 cells was impaired by deletion of RESP18HD. ICA512-RESP18HD binds with high-affinity to insulin and proinsulin. CONCLUSIONS: RESP18HD is required for efficient sorting of ICA512 to secretory granules. GENERAL SIGNIFICANCE: RESP18HD is a key determinant for ICA512 granule targeting.


Subject(s)
Insulin/metabolism , Nerve Tissue Proteins/chemistry , Protein Structure, Tertiary/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 8/chemistry , Amino Acid Sequence/genetics , Biophysics , Cell Proliferation/genetics , Humans , Insulin/chemistry , Islets of Langerhans/chemistry , Islets of Langerhans/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroendocrine Cells/chemistry , Neuroendocrine Cells/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Secretory Vesicles/chemistry , Secretory Vesicles/metabolism
13.
Mol Cell Biol ; 35(6): 914-27, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25561468

ABSTRACT

The type 1 diabetes autoantigen ICA512/IA-2/RPTPN is a receptor protein tyrosine phosphatase of the insulin secretory granules (SGs) which regulates the size of granule stores, possibly via cleavage/signaling of its cytosolic tail. The role of its extracellular region remains unknown. Structural studies indicated that ß2- or ß4-strands in the mature ectodomain (ME ICA512) form dimers in vitro. Here we show that ME ICA512 prompts proICA512 dimerization in the endoplasmic reticulum. Perturbation of ME ICA512 ß2-strand N-glycosylation upon S508A replacement allows for proICA512 dimerization, O-glycosylation, targeting to granules, and conversion, which are instead precluded upon G553D replacement in the ME ICA512 ß4-strand. S508A/G553D and N506A/G553D double mutants dimerize but remain in the endoplasmic reticulum. Removal of the N-terminal fragment (ICA512-NTF) preceding ME ICA512 allows an ICA512-ΔNTF G553D mutant to exit the endoplasmic reticulum, and ICA512-ΔNTF is constitutively delivered to the cell surface. The signal for SG sorting is located within the NTF RESP18 homology domain (RESP18-HD), whereas soluble NTF is retained in the endoplasmic reticulum. Hence, we propose that the ME ICA512 ß2-strand fosters proICA512 dimerization until NTF prevents N506 glycosylation. Removal of this constraint allows for proICA512 ß4-strand-induced dimerization, exit from the endoplasmic reticulum, O-glycosylation, and RESP18-HD-mediated targeting to granules.


Subject(s)
Cytoplasmic Granules/metabolism , Endoplasmic Reticulum/metabolism , Insulin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Secretory Vesicles/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Cytosol/metabolism , Dimerization , Glycosylation , Islets of Langerhans/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Rats
14.
J Struct Funct Genomics ; 16(1): 1-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25421040

ABSTRACT

Phogrin/IA-2ß and ICA512/IA-2 are two paralogs receptor-type protein-tyrosine phosphatases (RPTP) that localize in secretory granules of various neuroendocrine cells. In pancreatic islet ß-cells, they participate in the regulation of insulin secretion, ensuring proper granulogenesis, and ß-cell proliferation. The role of their cytoplasmic tail has been partially unveiled, while that of their luminal region remains unclear. To advance the understanding of its structure-function relationship, the X-ray structure of the mature ectodomain of phogrin (ME phogrin) at pH 7.4 and 4.6 has been solved at 1.95- and 2.01-Å resolution, respectively. Similarly to the ME of ICA512, ME phogrin adopts a ferredoxin-like fold: a sheet of four antiparallel ß-strands packed against two α-helices. Sequence conservation among vertebrates, plants and insects suggests that the structural similarity extends to all the receptor family. Crystallized ME phogrin is monomeric, in agreement with solution studies but in striking contrast with the behavior of homodimeric ME ICA512. The structural details that may cause the quaternary structure differences are analyzed. The results provide a basis for building models of the overall orientation and oligomerization state of the receptor in biological membranes.


Subject(s)
Protein Structure, Secondary , Protein Structure, Tertiary , Receptor-Like Protein Tyrosine Phosphatases, Class 8/chemistry , Amino Acid Sequence , Binding Sites/genetics , Crystallography, X-Ray , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Multimerization , Receptor-Like Protein Tyrosine Phosphatases, Class 8/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Sequence Homology, Amino Acid , Solutions , Structure-Activity Relationship
15.
J Struct Funct Genomics ; 14(4): 145-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24241823

ABSTRACT

Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded ß-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal ß-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.


Subject(s)
Carrier Proteins/chemistry , Evolution, Molecular , Fungal Proteins/chemistry , Lipids/chemistry , Models, Molecular , Yarrowia/metabolism , Amino Acid Sequence , Binding Sites , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Folding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Static Electricity
16.
Protein Pept Lett ; 20(9): 1009-17, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23016632

ABSTRACT

The receptor-type protein-tyrosine phosphatase (RPTP) phogrin is localized at the membrane of secretory granules of pancreatic islet ß-cells and, similarly to the closely related ICA512, plays a role in the regulation of insulin secretion, in ensuring proper granulogenesis and stability, and in the regulation of ß-cell growth. The mature membraneproximal ectodomain of phogrin (MPE phogrin) was produced as a recombinant protein and characterized. CD, fluorescence, controlled proteolysis, size-exclusion chromatography, and multi-angle light scattering showed that it is a properlyfolded monomeric domain. Equilibrium experiments, in the presence of guanidinium chloride and thermal unfolding, suggest a two-state mechanism with a ΔG of 2.3-3.3 kcal/mol, respectively. The study establishes common features and differences of MPE phogrin and the homologous ectodomain of ICA512. A homology model of phogrin was built based in the x-ray structure of MPE ICA512. The model is a starting point for modeling the entire receptor and for testing the quaternary structure and interactions of this protein in vivo. A description of the membrane insertion mode and putative interacting surfaces of this large protein is fundamental for the understanding of its biological function.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Animals , Circular Dichroism , Mice , Models, Molecular , Protein Structure, Tertiary , Protein Unfolding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics
17.
Protein Sci ; 21(7): 964-76, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22496053

ABSTRACT

ß-lactamases confer antibiotic resistance, one of the most serious world-wide health problems, and are an excellent theoretical and experimental model in the study of protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class-A ß-lactamase with three tryptophan residues located in the protein core. Here, we report the 1.7-Å resolution X-ray structure, catalytic parameters, and thermodynamic stability of ESP(ΔW), an engineered mutant of ESP in which phenylalanine replaces the wild-type tryptophan residues. The structure revealed no qualitative conformational changes compared with thirteen previously reported structures of B. licheniformis ß-lactamases (RMSD = 0.4-1.2 Å). However, a closer scrutiny showed that the mutations result in an overall more compact structure, with most atoms shifted toward the geometric center of the molecule. Thus, ESP(ΔW) has a significantly smaller radius of gyration (R(g)) than the other B. licheniformis ß-lactamases characterized so far. Indeed, ESP(ΔW) has the smallest R(g) among 126 Class-A ß-lactamases in the Protein Data Bank (PDB). Other measures of compactness, like the number of atoms in fixed volumes and the number and average of noncovalent distances, confirmed the effect. ESP(ΔW) proves that the compactness of the native state can be enhanced by protein engineering and establishes a new lower limit to the compactness of the Class-A ß-lactamase fold. As the condensation achieved by the native state is a paramount notion in protein folding, this result may contribute to a better understanding of how the sequence determines the conformational variability and thermodynamic stability of a given fold.


Subject(s)
Bacillus/enzymology , Tryptophan/chemistry , beta-Lactamases/chemistry , Bacillus/chemistry , Bacillus/genetics , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Folding , Thermodynamics , Tryptophan/genetics , Tryptophan/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism
18.
PLoS One ; 6(9): e24191, 2011.
Article in English | MEDLINE | ID: mdl-21935384

ABSTRACT

ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases, Class 8/chemistry , Binding Sites , Calcium/chemistry , Cell Nucleus/metabolism , Crystallization , Crystallography, X-Ray/methods , DNA/metabolism , Dimerization , Humans , Hydrogen-Ion Concentration , Insulin/chemistry , Models, Molecular , Molecular Conformation , Protein Interaction Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Solvents/chemistry , Surface Properties
19.
Biophys Chem ; 151(3): 111-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20561743

ABSTRACT

beta-lactamases (penicillinases) are important complicating factors in bacterial infections and excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A beta-lactamase with three tryptophan residues, one located in each of the two protein domains and one located in the interface between domains. To determine the tryptophan contribution to the ESP UV-absorption, circular dichroism, and steady-state and time-resolved fluorescence, four Trp-->Phe mutants were prepared and characterized. The residue substitutions had little impact on the native conformation. UV-absorption and CD features were identified and ascribed to specific aromatic residues. Time-resolved fluorescence showed that most of the fluorescence decay of ESP tryptophans is due to a discrete exponential component with a lifetime of 5-6ns. Fluorescence polarization measurements indicated that fluorescence of Trp 210 is nearly independent of the fluorescence of Trp 229 and Trp 251, whereas a substantial energy homotransfer between the latter pair takes place. The spectroscopic information was rationalized on the basis of structural considerations and should help in the interpretation and monitoring of the changes at the sub domain level during the conformational transitions and fluctuations of ESP and other Class A beta-lactamases.


Subject(s)
Bacillus/enzymology , Mutant Proteins/chemistry , Mutation , Optical Phenomena , Penicillinase/chemistry , Tryptophan/metabolism , Absorption , Biocatalysis , Models, Molecular , Mutagenesis , Mutant Proteins/genetics , Mutant Proteins/isolation & purification , Mutant Proteins/metabolism , Penicillinase/genetics , Penicillinase/isolation & purification , Penicillinase/metabolism , Protein Folding , Protein Structure, Tertiary , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
20.
Protein Expr Purif ; 71(2): 153-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20064618

ABSTRACT

Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.


Subject(s)
Biophysical Phenomena , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphorylcholine/metabolism , Pseudomonas aeruginosa/enzymology , Catalysis , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Inclusion Bodies/chemistry , Inclusion Bodies/enzymology , Inclusion Bodies/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphorylcholine/analysis , Pseudomonas Infections/enzymology , Pseudomonas Infections/genetics , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...