Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
JAMA Ophthalmol ; 141(10): 990-999, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37261839

ABSTRACT

Importance: The global prevalence of myopia is predicted to approach 50% by 2050, increasing the risk of visual impairment later in life. No pharmacologic therapy is approved for treating childhood myopia progression. Objective: To assess the safety and efficacy of NVK002 (Vyluma), a novel, preservative-free, 0.01% and 0.02% low-dose atropine formulation for treating myopia progression. Design, Setting, and Participants: This was a double-masked, placebo-controlled, parallel-group, randomized phase 3 clinical trial conducted from November 20, 2017, through August 22, 2022, of placebo vs low-dose atropine, 0.01% and 0.02% (2:2:3 ratio). Participants were recruited from 26 clinical sites in North America and 5 countries in Europe. Enrolled participants were 3 to 16 years of age with -0.50 diopter (D) to -6.00 D spherical equivalent refractive error (SER) and no worse than -1.50 D astigmatism. Interventions: Once-daily placebo, low-dose atropine, 0.01%, or low-dose atropine, 0.02%, eye drops for 36 months. Main Outcomes and Measures: The primary, prespecified end point was the proportion of participants' eyes responding to 0.02% atropine vs placebo therapy (<0.50 D myopia progression at 36 months [responder analysis]). Secondary efficacy end points included responder analysis for atropine, 0.01%, and mean change from baseline in SER and axial length at month 36 in a modified intention-to-treat population (mITT; participants 6-10 years of age at baseline). Safety measurements for treated participants (3-16 years of age) were reported. Results: A total of 576 participants were randomly assigned to treatment groups. Of these, 573 participants (99.5%; mean [SD] age, 8.9 [2.0] years; 315 female [54.7%]) received trial treatment (3 participants who were randomized did not receive trial drug) and were included in the safety set. The 489 participants (84.9%) who were 6 to 10 years of age at randomization composed the mITT set. At month 36, compared with placebo, low-dose atropine, 0.02%, did not significantly increase the responder proportion (odds ratio [OR], 1.77; 95% CI, 0.50-6.26; P = .37) or slow mean SER progression (least squares mean [LSM] difference, 0.10 D; 95% CI, -0.02 D to 0.22 D; P = .10) but did slow mean axial elongation (LSM difference, -0.08 mm; 95% CI, -0.13 mm to -0.02 mm; P = .005); however, at month 36, compared with placebo, low-dose atropine, 0.01%, significantly increased the responder proportion (OR, 4.54; 95% CI, 1.15-17.97; P = .03), slowed mean SER progression (LSM difference, 0.24 D; 95% CI, 0.11 D-0.37 D; P < .001), and slowed axial elongation (LSM difference, -0.13 mm; 95% CI, -0.19 mm to -0.07 mm; P < .001). There were no serious ocular adverse events and few serious nonocular events; none was judged as associated with atropine. Conclusions and Relevance: This randomized clinical trial found that 0.02% atropine did not significantly increase the proportion of participants' eyes responding to therapy but suggested efficacy for 0.01% atropine across all 3 main end points compared with placebo. The efficacy and safety observed suggest that low-dose atropine may provide a treatment option for childhood myopia progression. Trial Registration: ClinicalTrials.gov Identifier: NCT03350620.

2.
Adv Pharmacol ; 70: 121-33, 2014.
Article in English | MEDLINE | ID: mdl-24931194

ABSTRACT

The cannabinoid receptors are G protein-coupled receptors activated by endocannabinoids or exogenous agonist such as tetrahydrocannabinol. Upon agonist binding, cannabinoid receptors will activate G proteins of the Gi family, which in turn inhibits adenylyl cyclase. Recently, inverse agonists and neutral antagonist for cannabinoid receptors have been discovered, demonstrating constitutive activity of the cannabinoid receptors. This chapter will discuss the current state of the art and provide a framework for evaluating constitutive receptor activity and distinguishing constitutive receptor activity from constitutive endogenous agonist tone.


Subject(s)
Mutation/genetics , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Animals , Biological Assay , Cyclic AMP/metabolism , Drug Design , Humans , Thermodynamics
3.
Metabolism ; 61(4): 546-53, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22001334

ABSTRACT

Pharmacologic inhibition of the cannabinoid-1 receptor (CB1R) in rodent models leads to weight loss and time-dependent changes in energy balance. This study evaluated the effects of CB1R inhibition on weight loss, energy expenditure (EE), and food intake (FI) in an obese canine model following 4 weeks of treatment. Eighteen maintenance-fed obese beagles were evenly and randomly allocated to a CB1R inverse agonist (AM251) (2 mg/kg), a 70% food-restricted (FR) diet, or a control group (C). Evaluations included body weight and composition (dual-energy x-ray absorptiometry scan), EE (doubly labeled water), and FI. Change in body mass at week 4 was significantly greater (P < .050) in the AM251 (-1476.7 g) and FR groups (-1100.0 g) than in the C group (-228.3 g). Food intake was decreased from week 2 onward in the FR and AM251 groups (P < .05). Absolute and lean mass-adjusted EEs were decreased only in the FR group (P < .01); EE in the AM251 group was greater (P < .05) than that in the FR group. Pharmacologic inhibition of CB1R in a canine model led to sustained effects on FI and EE. Weight loss was greater with AM251 than could be accounted for by food restriction (∼25%), an effect likely mediated by the EE response to CB1R inhibition.


Subject(s)
Energy Metabolism/physiology , Obesity/drug therapy , Obesity/metabolism , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Weight Loss/drug effects , Absorptiometry, Photon , Animals , Disease Models, Animal , Dogs , Eating/drug effects , Eating/physiology , Female , Glucose Tolerance Test , Random Allocation , Receptor, Cannabinoid, CB1/metabolism , Weight Loss/physiology
4.
5.
Behav Pharmacol ; 22(2): 91-100, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21301326

ABSTRACT

Cannabinoid receptors (CBRs) play an important role in a variety of physiological functions and have been considered drug targets for obesity and psychiatric disorders. In particular, the CB1R is highly expressed in brain regions crucial to learning and memory processes, and several lines of evidence indicate that pharmacological blockade of this receptor could have therapeutic applications in the treatment of cognitive disorders. In this study, we investigated whether MK-7128 (0.1, 0.3, and 1 mg/kg, orally), a novel and selective CB1R inverse agonist, could improve learning and memory deficits induced by scopolamine (1 mg/kg, subcutaneously) in mice. The investigators also assessed CB1R occupancy in the brain to ensure target engagement of MK-7128, and showed that MK-7128 significantly improved both Y-maze spontaneous alternation and object habituation performance in scopolamine-treated mice and inhibits the binding of radioiodinated AM251 in murine cortex and hippocampus. These data indicate that MK-7128 improves cognitive performance in a model of cholinergic hypofunction and suggest that efficacy is achieved at relatively low levels of CB1R occupancy in the brain. Our results extend earlier findings suggesting a role of CB1Rs in the modulation of memory processes and a potential therapeutic application for CB1R inverse agonists in cognitive disorders.


Subject(s)
Azetidines/pharmacology , Drug Inverse Agonism , Memory Disorders/drug therapy , Oxadiazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Animals , Azetidines/administration & dosage , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cognition Disorders/drug therapy , Cognition Disorders/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Oxadiazoles/administration & dosage , Piperidines/metabolism , Protein Binding , Pyrazoles/metabolism , Scopolamine
6.
Methods Enzymol ; 485: 139-45, 2010.
Article in English | MEDLINE | ID: mdl-21050915

ABSTRACT

The cannabinoid receptors are G protein-coupled receptors that are activated by endocannabinoids or exogenous agonists such as tetrahydrocannabinol. Upon agonist binding, cannabinoid receptors will activate Gi which in turn inhibits adenylyl cyclase. Recently, inverse agonists for the cannabinoid receptors have been identified, demonstrating constitutive activity of the cannabinoid receptors. Several methods have been used to measure inverse agonist activity of ligands for the cannabinoid receptors, including Gi-cAMP second messenger assay, GTPγS binding assay, and electrophysiological assays. Each assay has its advantages and limitations, and the Gi-cAMP second messenger assay appears to provide the best overall measurement of inverse agonism in a cellular environment.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Inverse Agonism , Receptors, Cannabinoid/metabolism , Animals , Cell Line , Cyclic AMP/metabolism , Electrophysiology/methods , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans
7.
Bioorg Med Chem Lett ; 20(22): 6524-32, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20933410

ABSTRACT

We report an SAR study of MC4R analogs containing spiroindane heterocyclic privileged structures. Compound 26 with N-Me-1,2,4-triazole moiety possesses exceptional potency at MC4R and potent anti-obesity efficacy in a mouse model. However, the efficacy is not completely mediated through MC4R. Additional SAR studies led to the discovery of compound 32, which is more potent at MC4R. Compound 32 demonstrates MC4R mediated anti-obesity efficacy in rodent models.


Subject(s)
Obesity/drug therapy , Receptor, Melanocortin, Type 4/agonists , Triazoles/pharmacology , Animals , Chromatography, High Pressure Liquid , Disease Models, Animal , Mice , Mice, Knockout , Molecular Structure , Rats , Receptor, Melanocortin, Type 4/genetics , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/therapeutic use
8.
Bioorg Med Chem Lett ; 20(16): 4757-61, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20643546

ABSTRACT

The design, synthesis, and binding activity of ring constrained analogs of the acyclic cannabinoid-1 receptor (CB1R) inverse agonist taranabant 1 are described. The initial inspiration for these taranabant derivatives was its conformation 1a, determined by (1)H NMR, X-ray, and molecular modeling. The constrained analogs were all much less potent than their acyclic parent structure. The results obtained are discussed in the context of a predicted binding of 1 to a homology model of CB1R.


Subject(s)
Amides/chemistry , Anti-Obesity Agents/chemical synthesis , Pyridines/chemistry , Receptor, Cannabinoid, CB1/chemistry , Amides/chemical synthesis , Amides/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Computer Simulation , Humans , Models, Molecular , Molecular Conformation , Protein Binding , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptor, Cannabinoid, CB1/metabolism
11.
Bioorg Med Chem Lett ; 20(15): 4399-405, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20598882

ABSTRACT

We report a series of potent and selective MC4R agonists based on spiroindane amide privileged structures for potential treatments of obesity. Among the synthetic methods used, Method C allows rapid synthesis of the analogs. The series of compounds can afford high potency on MC4R as well as good rodent pharmacokinetic profiles. Compound 1r (MK-0489) demonstrates MC4R mediated reduction of food intake and body weight in mouse models. Compound 1r is efficacious in 14-day diet-induced obese (DIO) rat models.


Subject(s)
Amides/chemistry , Anti-Obesity Agents/chemistry , Obesity/drug therapy , Pyrrolidines/chemistry , Receptor, Melanocortin, Type 4/agonists , Spiro Compounds/chemistry , Amides/pharmacokinetics , Amides/therapeutic use , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/therapeutic use , Body Weight/drug effects , Humans , Mice , Mice, Knockout , Pyrrolidines/pharmacokinetics , Pyrrolidines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 4/metabolism , Spiro Compounds/pharmacokinetics , Spiro Compounds/therapeutic use , Structure-Activity Relationship
12.
Mol Pharmacol ; 78(3): 350-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20530130

ABSTRACT

Inhibition of cannabinoid receptor 1 (CB1) has shown efficacy in reducing body weight and improving metabolic parameters, with the effects correlating with target engagement in the brain. The peripheral effects of inhibiting the CB1 receptor has been appreciated through studies in diet-induced obese and liver-specific CB1 knockout mice. In this article, we systematically investigated gene expression changes in peripheral tissues of diet-induced obese mice treated with the CB1 inverse agonist AM251 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide]. CB1 receptor inhibition led to down-regulation of genes within the de novo fatty acid and cholesterol synthetic pathways, including sterol regulatory element binding proteins 1 and 2 and their downstream targets in both liver and adipose tissue. In addition, genes involved in fatty acid beta-oxidation were up-regulated with AM251 treatment, probably through the activation of peroxisome proliferator-activated receptor alpha (PPARalpha). In adipose tissue, CB1 receptor inhibition led to the down-regulation of genes in the tumor necrosis factor alpha signal transduction pathway and possibly to the activation of PPARgamma, both of which would result in improved insulin sensitivity.


Subject(s)
Cannabinoid Receptor Agonists , Insulin Resistance/genetics , Adipose Tissue/metabolism , Animals , Down-Regulation/drug effects , Homozygote , Insulin/genetics , Insulin/metabolism , Insulin/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Mice, Obese , PPAR alpha/agonists , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/genetics , PPAR gamma/metabolism , Piperidines , Pyrazoles/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Sterol Regulatory Element Binding Protein 1/agonists , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Transcriptional Activation
14.
J Med Chem ; 53(10): 4028-37, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20423086

ABSTRACT

This paper describes the discovery of N-[(4R)-6-(4-chlorophenyl)-7-(2,4-dichlorophenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridin-4-yl]-5-methyl-1H-pyrazole-3-carboxamide (MK-5596, 12c) as a novel cannabinoid-1 receptor (CB1R) inverse agonist for the treatment of obesity. Structure-activity relationship (SAR) studies of lead compound 3, which had off-target hERG (human ether-a-go-go related gene) inhibition activity, led to the identification of several compounds that not only had attenuated hERG inhibition activity but also were subject to glucuronidation in vitro providing the potential for multiple metabolic clearance pathways. Among them, pyrazole 12c was found to be a highly selective CB1R inverse agonist that reduced body weight and food intake in a DIO (diet-induced obese) rat model through a CB1R-mediated mechanism. Although 12c was a substrate of P-glycoprotein (P-gp) transporter, its high in vivo efficacy in rodents, good pharmacokinetic properties in preclinical species, good safety margins, and its potential for a balanced metabolism profile in man allowed for the further evaluation of this compound in the clinic.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Pyrans/chemical synthesis , Pyridines/chemical synthesis , Receptor, Cannabinoid, CB1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Binding, Competitive , Body Weight/drug effects , Cell Line , Cricetinae , Cricetulus , Crystallography, X-Ray , Dogs , Drug Inverse Agonism , Eating/drug effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Glucuronides/metabolism , Haplorhini , Hepatocytes/metabolism , Humans , Mice , Mice, Knockout , Models, Molecular , Molecular Conformation , Pyrans/pharmacokinetics , Pyrans/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Receptor, Cannabinoid, CB1/genetics , Stereoisomerism , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 20(7): 2106-10, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20207541

ABSTRACT

We report the design, synthesis and properties of spiroindane based compound 1, a potent, selective, orally bioavailable, non-peptide melanocortin subtype-4 receptor agonist. Compound 1 shows excellent erectogenic activity in the rodent models.


Subject(s)
Erectile Dysfunction/drug therapy , Indans/chemistry , Indans/therapeutic use , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/metabolism , Spiro Compounds/chemistry , Spiro Compounds/therapeutic use , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Haplorhini , Humans , Indans/pharmacokinetics , Indans/pharmacology , Male , Mice , Molecular Structure , Protein Binding , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 20(4): 1448-52, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20096577

ABSTRACT

The synthesis, SAR and binding affinities of cannabinoid-1 receptor (CB1R) inverse agonists based on furo[2,3-b]pyridine scaffolds are described. Food intake, mechanism specific efficacy, pharmacokinetic, and metabolic evaluation of several of these compounds indicate that they are effective orally active modulators of CB1R.


Subject(s)
Drug Design , Furans/chemical synthesis , Pyridines/chemical synthesis , Receptor, Cannabinoid, CB1/agonists , Animals , Benzopyrans , Dogs , Furans/chemistry , Furans/pharmacology , Haplorhini , Humans , Inhibitory Concentration 50 , Mice , Mice, Knockout , Molecular Structure , Pyridines/chemistry , Pyridines/pharmacology , Rats , Receptor, Cannabinoid, CB1/genetics , Structure-Activity Relationship
17.
Cell Metab ; 11(2): 101-12, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-20096642

ABSTRACT

Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.


Subject(s)
Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Peptides/therapeutic use , Receptors, Bombesin/agonists , Receptors, Bombesin/metabolism , Animals , Anti-Obesity Agents/pharmacokinetics , Body Weight/drug effects , Brain/metabolism , Eating/drug effects , Energy Metabolism/drug effects , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Peptides/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Bombesin/antagonists & inhibitors
18.
Bioorg Med Chem Lett ; 19(17): 5195-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19632830

ABSTRACT

Obesity is a chronic medical condition that is affecting large population throughout the world. CB1 as a target for treatment of obesity has been under intensive studies. Taranabant was discovered and then developed by Merck as the 1st generation CB1R inverse agonist. Reported here is part of our effort on the 2nd generation of CB1R inverse agonist from the acyclic amide scaffold. We replaced the oxygen linker in taranabant with nitrogen and prepared a series of amino heterocyclic analogs through a divergent synthesis. Although in general, the amine linker gave reduced binding affinity, potent and selective CB1R inverse agonist was identified from the amino heterocycle series. Molecular modeling was applied to study the binding of the amino heterocycle series at CB1 binding site. The in vitro metabolism of representative members was studied and only trace glucuronidation was found. Thus, it suggests that the right hand side of the molecule may not be the appropriate site for glucuronidation.


Subject(s)
Amides/chemistry , Anti-Obesity Agents/chemistry , Pyridines/chemistry , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacology , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacology , Binding Sites , Computer Simulation , Drug Inverse Agonism , Humans , Microsomes, Liver/metabolism , Pyridines/pharmacology , Rats , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Recombinant Proteins/agonists , Recombinant Proteins/metabolism
19.
Bioorg Med Chem Lett ; 19(9): 2591-4, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19328684

ABSTRACT

The synthesis, SAR and binding affinities are described for cannabinoid-1 receptor (CB1R) specific inverse agonists based on pyridopyrimidine and heterotricyclic scaffolds. Food intake and pharmacokinetic evaluation of several of these compounds indicate that they are effective orally active modulators of CB1R.


Subject(s)
Cannabinoid Receptor Agonists , Obesity/drug therapy , Pyrimidines/chemistry , Administration, Oral , Animals , Cannabinoids/chemistry , Chemistry, Pharmaceutical/methods , Drug Design , Humans , Inhibitory Concentration 50 , Protein Structure, Tertiary , Rats , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Structure-Activity Relationship
20.
J Med Chem ; 52(8): 2550-8, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19320488

ABSTRACT

A novel series of 1-sulfonyl-4-acylpiperazines as selective cannabinoid-1 receptor (CB1R) inverse agonists was discovered through high throughput screening (HTS) and medicinal chemistry lead optimization. Potency and in vivo properties were systematically optimized to afford orally bioavailable, highly efficacious, and selective CB1R inverse agonists that caused food intake suppression and body weight reduction in diet-induced obese rats and dogs. It was found that the receptor binding assay predicted in vivo efficacy better than functional antagonist/inverse agonist activities. This observation expedited the structure-activity relationship (SAR) analysis and may have implications beyond the series of compounds presented herein.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Piperazines/chemical synthesis , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Biological Availability , Body Weight/drug effects , Dogs , Drug Inverse Agonism , Eating/drug effects , Hepatocytes/metabolism , Humans , In Vitro Techniques , Macaca mulatta , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/chemistry , Piperazines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...