Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793558

ABSTRACT

The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cucumovirus , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cucumovirus/metabolism , Cucumovirus/genetics , Cucumovirus/physiology , Arabidopsis/metabolism , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Viral Proteins/metabolism , Viral Proteins/genetics , Host-Pathogen Interactions , Viral Replicase Complex Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Plant Diseases/virology , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Methyltransferases
2.
Nat Commun ; 15(1): 1334, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351103

ABSTRACT

G protein-coupled receptors (GPCRs) bind to different G protein α-subtypes with varying degrees of selectivity. The mechanism by which GPCRs achieve this selectivity is still unclear. Using 13C methyl methionine and 19F NMR, we investigate the agonist-bound active state of ß1AR and its ternary complexes with different G proteins in solution. We find the receptor in the ternary complexes adopts very similar conformations. In contrast, the full agonist-bound receptor active state assumes a conformation differing from previously characterised activation intermediates or from ß1AR in ternary complexes. Assessing the kinetics of binding for the agonist-bound receptor with different G proteins, we find the increased affinity of ß1AR for Gs results from its much faster association with the receptor. Consequently, we suggest a kinetic-driven selectivity gate between canonical and secondary coupling which arises from differential favourability of G protein binding to the agonist-bound receptor active state.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism , Protein Binding
3.
Angew Chem Int Ed Engl ; 62(7): e202212063, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36316279

ABSTRACT

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Water , Solvents
4.
Angew Chem Weinheim Bergstr Ger ; 135(7): e202212063, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-38516046

ABSTRACT

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2O to D2O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.

5.
Magn Reson (Gott) ; 2(2): 843-861, 2021.
Article in English | MEDLINE | ID: mdl-37905225

ABSTRACT

Although the concepts of nonuniform sampling (NUS​​​​​​​) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago , it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., "resolution") or peaks of weak intensity (i.e., "sensitivity"). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the "Nonuniform Sampling Contest" (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.

6.
Molecules ; 25(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076366

ABSTRACT

Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Receptors, G-Protein-Coupled/chemistry , Biomimetics , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Physical Phenomena , Receptors, G-Protein-Coupled/ultrastructure , Signal Transduction
7.
Nat Commun ; 11(1): 669, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015348

ABSTRACT

G-protein-coupled receptors (GPCRs) are allosteric signaling proteins that transmit an extracellular stimulus across the cell membrane. Using 19F NMR and site-specific labelling, we investigate the response of the cytoplasmic region of transmembrane helices 6 and 7 of the ß1-adrenergic receptor to agonist stimulation and coupling to a Gs-protein-mimetic nanobody. Agonist binding shows the receptor in equilibrium between two inactive states and a pre-active form, increasingly populated with higher ligand efficacy. Nanobody coupling leads to a fully active ternary receptor complex present in amounts correlating directly with agonist efficacy, consistent with partial agonism. While for different agonists the helix 6 environment in the active-state ternary complexes resides in a well-defined conformation, showing little conformational mobility, the environment of the highly conserved NPxxY motif on helix 7 remains dynamic adopting diverse, agonist-specific conformations, implying a further role of this region in receptor function. An inactive nanobody-coupled ternary receptor form is also observed.


Subject(s)
Fluorine-19 Magnetic Resonance Imaging , Receptors, Adrenergic, beta-1/chemistry , Receptors, G-Protein-Coupled/chemistry , Amino Acid Sequence , Cell Membrane/metabolism , Humans , Ligands , Membrane Proteins/chemistry , Models, Molecular , Protein Conformation , Receptors, Adrenergic, beta-1/isolation & purification , Receptors, Adrenergic, beta-1/metabolism , Receptors, G-Protein-Coupled/metabolism
8.
J Biomol NMR ; 73(3-4): 93-104, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31055682

ABSTRACT

We present a model-based method for estimation of relaxation parameters from time-domain NMR data specifically suitable for processing data in popular 2D phase-sensitive experiments. Our model is formulated in terms of commutative bicomplex algebra, which allows us to use the complete information available in an NMR signal acquired with principles of quadrature detection without disregarding any of its dimensions. Compared to the traditional intensity-analysis method, our model-based approach offers an important advantage for the analysis of overlapping peaks and is robust over a wide range of signal-to-noise ratios. We assess its performance with simulated experiments and then apply it for determination of [Formula: see text], [Formula: see text], and [Formula: see text] relaxation rates in datasets of a protein with more than 100 cross peaks.


Subject(s)
Magnetic Resonance Spectroscopy , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Algorithms , Magnetic Resonance Spectroscopy/methods , Models, Theoretical , Nuclear Magnetic Resonance, Biomolecular/methods , Reproducibility of Results
9.
J Mol Biol ; 431(15): 2790-2809, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31071327

ABSTRACT

Sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis, is a novel model system for membrane protein folding studies. Recently, the SDS-denatured states and the kinetics for reversible unfolding of pSRII have been investigated, opening the door to the first detailed characterisation of denatured states of a membrane protein by solution-state nuclear magnetic resonance (NMR) using uniformly 15N-labelled pSRII. SDS denaturation and acid denaturation of pSRII both lead to fraying of helix ends but otherwise small structural changes in the transmembrane domain, consistent with little changes in secondary structure and disruption of the retinal-binding pocket and tertiary structure. Widespread changes in the backbone amide dynamics are detected in the form of line broadening, indicative of µs-to-ms timescale conformational exchange in the transmembrane region. Detailed analysis of chemical shift and intensity changes lead to high-resolution molecular insights on structural and dynamics changes in SDS- and acid-denatured pSRII, thus highlighting differences in the unfolding pathways under the two different denaturing conditions. These results will form the foundation for furthering our understanding on the folding and unfolding pathways of retinal-binding proteins and membrane proteins in general, and also for investigating the importance of ligand-binding in the folding pathways of other ligand-binding membrane proteins, such as GPCRs.


Subject(s)
Halobacteriaceae/metabolism , Sensory Rhodopsins/chemistry , Sodium Dodecyl Sulfate/pharmacology , Halobacteriaceae/chemistry , Halobacteriaceae/drug effects , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Folding/drug effects , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , Sensory Rhodopsins/drug effects
10.
Curr Opin Struct Biol ; 57: 145-156, 2019 08.
Article in English | MEDLINE | ID: mdl-31075520

ABSTRACT

Over recent years, nuclear magnetic resonance (NMR) spectroscopy has developed into a powerful mechanistic tool for the investigation of G protein-coupled receptors (GPCRs). NMR provides insights which underpin the dynamic nature of these important receptors and reveals experimental evidence for a complex conformational energy landscape that is explored during receptor activation resulting in signalling. NMR studies have highlighted both the dynamic properties of different receptor states as well as the exchange pathways and intermediates formed during activation, extending the static view of GPCRs obtained from other techniques. NMR studies can be undertaken in realistic membrane-like phospholipid environments and an ever-increasing choice of labelling strategies provides comprehensive, receptor-wide information. Combined with other structural methods, NMR is contributing to our understanding of allosteric signal propagation and the interaction of GPCRs with intracellular binding partners (IBP), crucial to explaining cellular signalling.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Receptors, G-Protein-Coupled/chemistry , Animals , Humans , Ligands , Protein Conformation , Receptors, G-Protein-Coupled/metabolism
11.
Photochem Photobiol ; 95(3): 787-802, 2019 05.
Article in English | MEDLINE | ID: mdl-30582615

ABSTRACT

The chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and 1 H NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with µm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. 19 F NMR experiments with samples where 19 F labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G-protein activation. Chemical shift changes in 1 H-15 N NMR spectroscopy of 15 N-Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin.


Subject(s)
Porphyrins/metabolism , Rhodopsin/metabolism , Allosteric Regulation , Amino Acid Sequence , Animals , Cattle , Chlorophyllides , Light , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Retina/metabolism , Rhodopsin/chemistry , Spectrometry, Fluorescence
12.
J Mol Biol ; 430(21): 4068-4086, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30098339

ABSTRACT

Our understanding on the folding of membrane proteins lags behind that of soluble proteins due to challenges posed by the exposure of hydrophobic regions during in vitro chemical denaturation and refolding experiments. While different folding models are accepted for soluble proteins, only the two-stage model and the long-range interactions model have been proposed so far for helical membrane proteins. To address our knowledge gap on how different membrane proteins traverse their folding pathways, we have systematically investigated the structural features of SDS-denatured states and the kinetics for reversible unfolding of sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis. pSRII is difficult to denature, and only SDS can dislodge the retinal chromophore without rapid aggregation. Even in 30% SDS (0.998 ΧSDS), pSRII retains the equivalent of six out of seven transmembrane helices, while the retinal-binding pocket is disrupted, with transmembrane residues becoming more solvent exposed. Folding of pSRII from an SDS-denatured state harboring a covalently bound retinal chromophore shows deviations from an apparent two-state behavior. SDS denaturation to form the sensory opsin apo-protein is reversible. We report pSRII as a new model protein which is suitable for membrane protein folding studies and has a unique folding mechanism that differs from those of bacteriorhodopsin and bovine rhodopsin.


Subject(s)
Protein Denaturation , Protein Unfolding , Sensory Rhodopsins/chemistry , Animals , Bacteriorhodopsins/chemistry , Bacteriorhodopsins/metabolism , Cattle , Kinetics , Protein Binding , Protein Conformation , Protein Folding , Protein Refolding , Protein Structure, Tertiary , Sensory Rhodopsins/metabolism , Solvents
13.
Chem Commun (Camb) ; 54(53): 7306-7309, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29905339

ABSTRACT

Sparse lipid fluorination enhances the lipids' 1H signal dispersion, enables clean molecular distinction by 19F NMR, and evinces micelle insertion of proteins via fluorine-induced signal shifts. We present a minimal fluorination scheme, and illustrate the concept on di-(4-fluoro)-heptanoylphosphatidylcholine micelles and solubilised seven-helix transmembrane pSRII protein.


Subject(s)
Archaeal Proteins/chemistry , Carotenoids/chemistry , Lipids/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylcholines/chemistry , Halogenation , Micelles , Models, Molecular
14.
Nat Commun ; 8(1): 1795, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29176642

ABSTRACT

A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., Gs and ß-arrestin. Using 13C methyl methionine NMR for the ß1-adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with Gs-mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through ligand-free nanobody-receptor interaction reveals structural differences on the cytoplasmic receptor side compared to the full agonist-bound nanobody-coupled form, suggesting that ligand-induced variations in G-protein interaction underpin partial agonism. Significant differences in receptor dynamics are observed ranging from rigid nanobody-coupled states to extensive µs-to-ms timescale dynamics when bound to a full agonist. We suggest that the mobility of the full agonist-bound form primes the GPCR to couple to IBPs. On formation of the ternary complex, ligand efficacy determines the quality of the interaction between the rigidified receptor and an IBP and consequently the signalling level.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , Single-Domain Antibodies/metabolism , Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Agonists/metabolism , Animals , Crystallography, X-Ray , GTP-Binding Protein alpha Subunits, Gs/chemistry , Ligands , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Receptors, Adrenergic, beta-2/chemistry , Sf9 Cells , Single-Domain Antibodies/chemistry , Spodoptera
15.
J Am Chem Soc ; 139(42): 14829-14832, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28990386

ABSTRACT

Based on the saposin-A (SapA) scaffold protein, we demonstrate the suitability of a size-adaptable phospholipid membrane-mimetic system for solution NMR studies of membrane proteins (MPs) under close-to-native conditions. The Salipro nanoparticle size can be tuned over a wide pH range by adjusting the saposin-to-lipid stoichiometry, enabling maintenance of sufficiently high amounts of phospholipid in the Salipro nanoparticle to mimic a realistic membrane environment while controlling the overall size to enable solution NMR for a range of MPs. Three representative MPs, including one G-protein-coupled receptor, were successfully incorporated into SapA-dimyristoylphosphatidylcholine nanoparticles and studied by solution NMR spectroscopy.


Subject(s)
Biomimetics , Magnetic Resonance Spectroscopy , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Membranes, Artificial , Phospholipids/chemistry , Dimyristoylphosphatidylcholine/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Nanoparticles/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Saposins/chemistry , Saposins/metabolism
16.
Biomol NMR Assign ; 10(2): 315-20, 2016 10.
Article in English | MEDLINE | ID: mdl-27356987

ABSTRACT

Proteins of the NSD family are histone-methyl transferases with critical functions in the regulation of chromatin structure and function. NSD1 and NSD2 are homologous proteins that function as epigenetic regulators of transcription through their abilities to catalyse histone methylation. Misregulation of NSD1 and NSD2 expression or mutations in their genes are linked to a number of human diseases such as Sotos syndrome, and cancers including acute myeloid leukemia, multiple myeloma, and lung cancer. The catalytic domain of both proteins contains a conserved SET domain which is involved in histone methylation. Here we report the backbone resonance assignments and secondary structure information of the catalytic domains of human NSD1 and NSD2.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Histone Methyltransferases , Humans , Protein Domains , Protein Structure, Secondary , Solutions
18.
J Biol Chem ; 291(26): 13875-90, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27129201

ABSTRACT

Transducer of Cdc42-dependent actin assembly protein 1 (TOCA1) is an effector of the Rho family small G protein Cdc42. It contains a membrane-deforming F-BAR domain as well as a Src homology 3 (SH3) domain and a G protein-binding homology region 1 (HR1) domain. TOCA1 binding to Cdc42 leads to actin rearrangements, which are thought to be involved in processes such as endocytosis, filopodia formation, and cell migration. We have solved the structure of the HR1 domain of TOCA1, providing the first structural data for this protein. We have found that the TOCA1 HR1, like the closely related CIP4 HR1, has interesting structural features that are not observed in other HR1 domains. We have also investigated the binding of the TOCA HR1 domain to Cdc42 and the potential ternary complex between Cdc42 and the G protein-binding regions of TOCA1 and a member of the Wiskott-Aldrich syndrome protein family, N-WASP. TOCA1 binds Cdc42 with micromolar affinity, in contrast to the nanomolar affinity of the N-WASP G protein-binding region for Cdc42. NMR experiments show that the Cdc42-binding domain from N-WASP is able to displace TOCA1 HR1 from Cdc42, whereas the N-WASP domain but not the TOCA1 HR1 domain inhibits actin polymerization. This suggests that TOCA1 binding to Cdc42 is an early step in the Cdc42-dependent pathways that govern actin dynamics, and the differential binding affinities of the effectors facilitate a handover from TOCA1 to N-WASP, which can then drive recruitment of the actin-modifying machinery.


Subject(s)
Carrier Proteins/chemistry , Monomeric GTP-Binding Proteins/chemistry , Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry , Xenopus Proteins/chemistry , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Fatty Acid-Binding Proteins , Humans , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Protein Binding , Protein Domains , Protein Structure, Quaternary , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis
19.
Biomol NMR Assign ; 10(2): 407-11, 2016 10.
Article in English | MEDLINE | ID: mdl-26988723

ABSTRACT

TOCA1 is a downstream effector protein of the small GTPase, Cdc42. It is a multi-domain protein that includes a membrane binding F-BAR domain, a homology region 1 (HR1) domain, which binds selectively to active Cdc42 and an SH3 domain. TOCA1 is involved in the regulation of actin dynamics in processes such as endocytosis, filopodia formation, neurite elongation, cell motility and invasion. Structural insight into the interaction between TOCA1 and Cdc42 will contribute to our understanding of the role of TOCA1 in actin dynamics. The (1)H, (15)N and (13)C NMR backbone and sidechain resonance assignment of the HR1 domain (12 kDa) presented here provides the foundation for structural studies of the domain and its interactions.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Fatty Acid-Binding Proteins , Protein Domains , Protein Structure, Secondary , Xenopus
20.
Biochem J ; 473(8): 1097-110, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26920023

ABSTRACT

Type I modular polyketide synthases (PKSs) produce polyketide natural products by passing a growing acyl substrate chain between a series of enzyme domains housed within a gigantic multifunctional polypeptide assembly. Throughout each round of chain extension and modification reactions, the substrate stays covalently linked to an acyl carrier protein (ACP) domain. In the present study we report on the solution structure and dynamics of an ACP domain excised from MLSA2, module 9 of the PKS system that constructs the macrolactone ring of the toxin mycolactone, cause of the tropical disease Buruli ulcer. After modification of apo ACP with 4'-phosphopantetheine (Ppant) to create the holo form, (15)N nuclear spin relaxation and paramagnetic relaxation enhancement (PRE) experiments suggest that the prosthetic group swings freely. The minimal chemical shift perturbations displayed by Ppant-attached C3 and C4 acyl chains imply that these substrate-mimics remain exposed to solvent at the end of a flexible Ppant arm. By contrast, hexanoyl and octanoyl chains yield much larger chemical shift perturbations, indicating that they interact with the surface of the domain. The solution structure of octanoyl-ACP shows the Ppant arm bending to allow the acyl chain to nestle into a nonpolar pocket, whereas the prosthetic group itself remains largely solvent exposed. Although the highly reduced octanoyl group is not a natural substrate for the ACP from MLSA2, similar presentation modes would permit partner enzyme domains to recognize an acyl group while it is bound to the surface of its carrier protein, allowing simultaneous interactions with both the substrate and the ACP.


Subject(s)
Acyl Carrier Protein/chemistry , Macrolides/chemistry , Mycobacterium ulcerans , Polyketide Synthases/chemistry , Acyl Carrier Protein/metabolism , Macrolides/metabolism , Polyketide Synthases/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...