Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
SLAS Technol ; 24(5): 489-498, 2019 10.
Article in English | MEDLINE | ID: mdl-31199699

ABSTRACT

Accurate measurement of drug-target interactions in vivo is critical for both preclinical development and translation to clinical studies, yet many assays rely on indirect measures such as biomarkers associated with target activity. Activity-based protein profiling (ABPP) is a direct method of quantifying enzyme activity using active site-targeted small-molecule covalent probes that selectively label active but not inhibitor-bound enzymes. Probe-labeled enzymes in complex proteomes are separated by polyacrylamide gel electrophoresis and quantified by fluorescence imaging. To accelerate workflows and avoid imaging artifacts that make conventional gels challenging to quantify, we adapted protocols for a commercial LabChip GXII microfluidic instrument to permit electrophoretic separation of probe-labeled proteins in tissue lysates and plasma, and quantification of fluorescence (probe/protein labeling ratio of 1:1). Electrophoretic separation on chips occurred in 40 s per sample, and instrument software automatically identified and quantified peaks, resulting in an overall time savings of 3-5 h per 96-well sample plate. Calculated percent inhibition was not significantly different between the two formats. Chip performance was consistent between chips and sample replicates. Conventional gel imaging was more sensitive but required five times higher sample volume than microfluidic chips. Microfluidic chips produced results comparable to those of gels but with much lower sample consumption, facilitating assay miniaturization for scarce biological samples. The time savings afforded by microfluidic electrophoresis and automatic quantification has allowed us to incorporate microfluidic ABPP early in the drug discovery workflow, enabling routine assessments of tissue distribution and engagement of targets and off-targets in vivo.


Subject(s)
Microfluidics/methods , Proteomics/methods , Algorithms , Animals , Biological Assay , Mice , Molecular Weight , Reproducibility of Results
2.
J Pharmacol Exp Ther ; 367(3): 494-508, 2018 12.
Article in English | MEDLINE | ID: mdl-30305428

ABSTRACT

Monoacylglycerol lipase (MGLL) is the primary degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). The first MGLL inhibitors have recently entered clinical development for the treatment of neurologic disorders. To support this clinical path, we report the pharmacological characterization of the highly potent and selective MGLL inhibitor ABD-1970 [1,1,1,3,3,3-hexafluoropropan-2-yl 4-(2-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-4-chlorobenzyl)piperazine-1-carboxylate]. We used ABD-1970 to confirm the role of MGLL in human systems and to define the relationship between MGLL target engagement, brain 2-AG concentrations, and efficacy. Because MGLL contributes to arachidonic acid metabolism in a subset of rodent tissues, we further used ABD-1970 to evaluate whether selective MGLL inhibition would affect prostanoid production in several human assays known to be sensitive to cyclooxygenase inhibitors. ABD-1970 robustly elevated brain 2-AG content and displayed antinociceptive and antipruritic activity in a battery of rodent models (ED50 values of 1-2 mg/kg). The antinociceptive effects of ABD-1970 were potentiated when combined with analgesic standards of care and occurred without overt cannabimimetic effects. ABD-1970 also blocked 2-AG hydrolysis in human brain tissue and elevated 2-AG content in human blood without affecting stimulated prostanoid production. These findings support the clinical development of MGLL inhibitors as a differentiated mechanism to treat pain and other neurologic disorders.


Subject(s)
Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Analgesics/pharmacology , Animals , Antipruritics/pharmacology , Arachidonic Acids/metabolism , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Cyclooxygenase Inhibitors/pharmacology , Glycerides/metabolism , Humans , Hydrolysis/drug effects , Male , Mice , Mice, Inbred ICR , PC-3 Cells , Pain/drug therapy , Pain/metabolism , Piperidines/pharmacology , Prostaglandins/pharmacology , Rats , Rats, Sprague-Dawley , Rodentia
3.
J Med Chem ; 61(20): 9062-9084, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30067909

ABSTRACT

The serine hydrolase monoacylglycerol lipase (MGLL) converts the endogenous cannabinoid receptor agonist 2-arachidonoylglycerol (2-AG) and other monoacylglycerols into fatty acids and glycerol. Genetic or pharmacological inactivation of MGLL leads to elevation in 2-AG in the central nervous system and corresponding reductions in arachidonic acid and eicosanoids, producing antinociceptive, anxiolytic, and antineuroinflammatory effects without inducing the full spectrum of psychoactive effects of direct cannabinoid receptor agonists. Here, we report the optimization of hexafluoroisopropyl carbamate-based irreversible inhibitors of MGLL, culminating in a highly potent, selective, and orally available, CNS-penetrant MGLL inhibitor, 28 (ABX-1431). Activity-based protein profiling experiments verify the exquisite selectivity of 28 for MGLL versus other members of the serine hydrolase class. In vivo, 28 inhibits MGLL activity in rodent brain (ED50 = 0.5-1.4 mg/kg), increases brain 2-AG concentrations, and suppresses pain behavior in the rat formalin pain model. ABX-1431 (28) is currently under evaluation in human clinical trials.


Subject(s)
Drug Discovery , Monoacylglycerol Lipases/antagonists & inhibitors , Nervous System Diseases/drug therapy , Nervous System Diseases/enzymology , Piperazine/pharmacology , Piperazines/pharmacology , Pyrrolidines/pharmacology , Animals , Dogs , Dose-Response Relationship, Drug , Humans , Male , Mice , Molecular Targeted Therapy , Pain/drug therapy , Pain/enzymology , Piperazine/pharmacokinetics , Piperazine/therapeutic use , Piperazines/pharmacokinetics , Piperazines/therapeutic use , Pyrrolidines/pharmacokinetics , Pyrrolidines/therapeutic use , Rats , Tissue Distribution
4.
BMC Pulm Med ; 14: 187, 2014 Nov 29.
Article in English | MEDLINE | ID: mdl-25432663

ABSTRACT

BACKGROUND: Increased small airway resistance and decreased lung elasticity contribute to the airflow limitation in chronic obstructive pulmonary disease (COPD). The lesion that corresponds to loss of lung elasticity is emphysema; the small airway obstruction is due to inflammatory narrowing and obliteration. Despite their convergence in altered physiology, different mechanisms contribute to these processes. The relationships between gene expression and these specific phenotypes may be more revealing than comparison with lung function. METHODS: We measured the ratio of alveolar surface area to lung volume (SA/V) in lung tissue from 43 smokers. Two samples from 21 subjects, in which SA/V differed by >49 cm2/mL were profiled to select genes whose expression correlated with SA/V. Significant genes were tested for replication in the 22 remaining subjects. RESULTS: The level of expression of 181 transcripts was related to SA/V ( p < 0.05). When these genes were tested in the 22 remaining subjects as a replication, thirty of the 181 genes remained significantly associated with SA/V (P < 0.05) and the direction of association was the same in 164/181. Pathway and network analysis revealed enrichment of genes involved in protein ubiquitination, and western blotting showed altered expression of genes involved in protein ubiquitination in obstructed individuals. CONCLUSION: This study implicates modified protein ubiquitination and degradation as a potentially important pathway in the pathogenesis of emphysema.


Subject(s)
Gene Expression , Lung/pathology , Pulmonary Alveoli/pathology , Pulmonary Emphysema/genetics , Ubiquitination/genetics , Aged , DNA-Binding Proteins/metabolism , Down-Regulation , F-Box Proteins/metabolism , Female , Humans , Lung Volume Measurements , Male , Middle Aged , Organ Size/genetics , Pulmonary Emphysema/metabolism , Signal Transduction/genetics , Smoking/physiopathology , Ubiquitin/metabolism , Ubiquitin-Specific Proteases/metabolism , Up-Regulation
5.
J Lipid Res ; 54(1): 177-88, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23103473

ABSTRACT

The use of nicotinic acid to treat dyslipidemia is limited by induction of a "flushing" response, mediated in part by the interaction of prostaglandin D(2) (PGD(2)) with its G-protein coupled receptor, DP1 (Ptgdr). The impact of DP1 blockade (genetic or pharmacologic) was assessed in experimental murine models of atherosclerosis. In Ptgdr(-/-)ApoE(-/-) mice versus ApoE(-/-) mice, both fed a high-fat diet, aortic cholesterol content was modestly higher (1.3- to 1.5-fold, P < 0.05) in Ptgdr(-/-)ApoE(-/-) mice at 16 and 24 weeks of age, but not at 32 weeks. In multiple ApoE(-/-) mouse studies, a DP1-specific antagonist, L-655, generally had a neutral to beneficial effect on aortic lipids in the presence or absence of nicotinic acid treatment. In a separate study, a modest increase in some atherosclerotic measures was observed with L-655 treatment in Ldlr(-/-) mice fed a high-fat diet for 8 weeks; however, this effect was not sustained for 16 or 24 weeks. In the same study, treatment with nicotinic acid alone generally decreased plasma and/or aortic lipids, and addition of L-655 did not negate those beneficial effects. These studies demonstrate that inhibition of DP1, with or without nicotinic acid treatment, does not lead to consistent or sustained effects on plaque burden in mouse atherosclerotic models.


Subject(s)
Gene Knockdown Techniques , Niacin/pharmacology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/genetics , Animals , Aorta/drug effects , Aorta/metabolism , Apolipoproteins E/deficiency , Cholesterol/metabolism , Drug Interactions , Endpoint Determination , Female , Humans , Male , Mice , Niacin/therapeutic use , Plaque, Atherosclerotic/genetics , Receptors, Immunologic/deficiency , Receptors, LDL/deficiency , Receptors, Prostaglandin/deficiency , Receptors, Thromboxane A2, Prostaglandin H2/metabolism
6.
Mol Syst Biol ; 8: 594, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22806142

ABSTRACT

Common inflammatome gene signatures as well as disease-specific signatures were identified by analyzing 12 expression profiling data sets derived from 9 different tissues isolated from 11 rodent inflammatory disease models. The inflammatome signature significantly overlaps with known drug targets and co-expressed gene modules linked to metabolic disorders and cancer. A large proportion of genes in this signature are tightly connected in tissue-specific Bayesian networks (BNs) built from multiple independent mouse and human cohorts. Both the inflammatome signature and the corresponding consensus BNs are highly enriched for immune response-related genes supported as causal for adiposity, adipokine, diabetes, aortic lesion, bone, muscle, and cholesterol traits, suggesting the causal nature of the inflammatome for a variety of diseases. Integration of this inflammatome signature with the BNs uncovered 151 key drivers that appeared to be more biologically important than the non-drivers in terms of their impact on disease phenotypes. The identification of this inflammatome signature, its network architecture, and key drivers not only highlights the shared etiology but also pinpoints potential targets for intervention of various common diseases.


Subject(s)
Gene Expression Profiling , Inflammasomes/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Age Factors , Analysis of Variance , Animals , Bayes Theorem , Caspases/genetics , Caspases/immunology , Chemokines/genetics , Chemokines/immunology , Cohort Studies , Computational Biology/methods , Disease Models, Animal , Female , Gene Regulatory Networks/immunology , Humans , Interleukins/genetics , Interleukins/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Sex Factors
7.
J Pharmacol Exp Ther ; 338(1): 220-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21459965

ABSTRACT

Both the physiological role of muscarinic receptors for bladder function and the therapeutic efficacy of antimuscarinic agents for overactive bladder syndrome are well documented. We investigated the effect of antimuscarinic agents with different subtype selectivity on urodynamic parameters in nonhuman primates and rodents and compared plasma levels of these agents between species. Anesthetized rhesus monkeys were transurethrally catheterized, and the bladder was infused with saline. Urodynamic parameters were measured before and after intravenous drug administration. Tolterodine (nonselective) and oxybutynin (moderately M(3)-selective) increased bladder capacity at lower doses than those required to decrease micturition pressure. However, higher doses of darifenacin (M(3)-selective) were needed to increase the bladder capacity than those needed to decrease the micturition pressure. In rats, tolterodine had no effect on the bladder capacity but decreased the micturition pressure at all of the doses administered. Oxybutynin also decreased micturition pressure and increased bladder capacity at the highest dose. Plasma levels of these drugs overlap in both species. These results suggest that, in addition to the M(3) receptor, other muscarinic receptor subtypes contribute to regulate bladder storage function in nonhuman primates, since less subtype-selective tolterodine and oxybutynin showed higher specificity to the bladder capacity effect than the effect on micturition pressure compared with M(3)-selective darifenacin. In addition, the role of muscarinic receptors in bladder storage function varies between primates and rodents. Compared with rodents, muscarinic receptors may play a more active role during the storage phase to regulate the functional bladder capacity in primates.


Subject(s)
Muscarinic Antagonists/pharmacology , Urinary Bladder/drug effects , Urinary Bladder/physiology , Animals , Benzhydryl Compounds/pharmacology , Cresols/pharmacology , Female , Macaca mulatta , Mandelic Acids/pharmacology , Phenylpropanolamine/pharmacology , Rats , Rats, Sprague-Dawley , Species Specificity , Tolterodine Tartrate
8.
Mol Pharmacol ; 79(1): 69-76, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20943773

ABSTRACT

The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor that has been reported to modulate inflammatory responses in various rodent models of asthma, allergic rhinitis and atopic dermatitis. In this study, we describe the biological and pharmacological properties of {(7R)-7-[[(4-fluorophenyl)sulfonyl](methyl)amino]-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl}acetic acid (MK-7246), a novel synthetic CRTH2 antagonist. We show that MK-7246 1) has high affinity for the human, monkey, dog, rat, and mouse CRTH2, 2) interacts with CRTH2 in a reversible manner, 3) exhibits high selectivity over all prostanoid receptors as well as 157 other receptors and enzymes, 4) acts as a full antagonist on recombinant and endogenously expressed CRTH2, 5) demonstrates good oral bioavailability and metabolic stability in various animal species, 6) yields ex vivo blockade of CRTH2 on eosinophils in monkeys and sheep, and 7) significantly blocks antigen-induced late-phase bronchoconstriction and airway hyper-responsiveness in sheep. MK-7246 represents a potent and selective tool to further investigate the in vivo function of CRTH2.


Subject(s)
Carbolines/chemistry , Carbolines/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/biosynthesis , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/biosynthesis , Th2 Cells/metabolism , Animals , Dogs , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , HEK293 Cells , Humans , Macaca fascicularis , Mice , Platelet Aggregation Inhibitors/pharmacology , Protein Binding/immunology , Rats , Receptors, Immunologic/metabolism , Receptors, Immunologic/physiology , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/physiology , Sheep , Species Specificity , Th2 Cells/drug effects
9.
Bioorg Med Chem Lett ; 21(1): 288-93, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21106375

ABSTRACT

In this manuscript we wish to report the discovery of MK-7246 (4), a potent and selective CRTH2 (DP2) antagonist. SAR studies leading to MK-7246 along with two synthetic sequences enabling the preparation of this novel class of CRTH2 antagonist are reported. Finally, the pharmacokinetic and metabolic profile of MK-7246 is disclosed.


Subject(s)
Carbolines/chemistry , Lung Diseases/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Animals , Carbolines/pharmacokinetics , Carbolines/therapeutic use , Humans , Macaca mulatta , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 20(24): 7462-5, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21036609

ABSTRACT

We discovered that the introduction of a methyl group to the benzylic position of the N-benzyl group in lead compound 1a has a dramatic effect on improving the binding selectivity of this ligand for the prostanoid receptors DP1 (receptor for prostaglandin D(2)) as compared to TP (receptor for thromboxane A(2)). Based on this discovery, we have synthesized a series of potent and highly selective DP1 antagonists. Among them, compound 1h was identified as a highly selective DP1 antagonist with excellent overall properties. It has a K(i) of 0.43 nM to DP1 in binding assay and an IC(50) of 2.5 nM in the DP1 functional assay. Its selectivity for DP1 over TP (the most potent receptor after DP1) exceeds 750-fold based on both binding and functional assays. These properties make 1h a very potent and highly selective DP1 receptor antagonist suitable for investigating the biological functions of DP1 in normal physiology and models of disease.


Subject(s)
Carbazoles/chemistry , Receptors, Prostaglandin/antagonists & inhibitors , Sulfones/chemistry , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Humans , Protein Binding , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacology
11.
COPD ; 7(1): 51-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20214463

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a prevalent pulmonary disease characterized by a progressive decline in lung function. The identification of biomarkers capable of predicting the rate of lung function decline or capable of giving an early read on drug efficacy in clinical trials would be very useful. The aim of this study was to identify plasma biomarkers capable of accurately distinguishing patients with COPD from healthy controls. Eighty-nine plasma markers in 40 COPD patients and 20 healthy smoker controls were analyzed. The COPD patients were divided into two subgroups, rapid and slow decliners based on their rate of lung function decline measured over 15 years. Univariate analysis revealed that 25 plasma markers were statistically different between rapid decliners and controls, 4 markers were different between slow decliners and controls, and 10 markers were different between rapid and slow decliners (p < 0.05). Multivariate analysis led to the identification of groups of plasma markers capable of distinguishing rapid decliners from controls (signature 1), slow decliners from controls (signature 2) and rapid from slow decliners (signature 3) with over 90% classification accuracy. Importantly, signature 1 was shown to be longitudinally stable using plasma samples taken a year later from a subset of patients. This study describes a novel set of plasma markers differentiating slow from rapid decline of lung function in COPD. If validated in distinct and larger cohorts, the signatures identified will have important implications in both disease diagnosis, as well as the clinical evaluation of new therapies.


Subject(s)
Biomarkers/blood , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Case-Control Studies , Female , Forced Expiratory Volume/physiology , Humans , Longitudinal Studies , Male , Middle Aged , Predictive Value of Tests , Prognosis , Pulmonary Disease, Chronic Obstructive/diagnosis , Severity of Illness Index , Time Factors
12.
J Med Chem ; 53(5): 2227-38, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20163116

ABSTRACT

The discovery of highly potent and selective second generation EP(4) antagonist MK-2894 (34d) is discussed. This compound exhibits favorable pharmacokinetic profile in a number of preclinical species and potent anti-inflammatory activity in several animal models of pain/inflammation. It also shows favorable GI tolerability profile in rats when compared to traditional NSAID indomethacin.


Subject(s)
Analgesics/chemical synthesis , Benzoates/chemical synthesis , Cyclopropanes/chemical synthesis , Prostaglandin Antagonists/chemical synthesis , Receptors, Prostaglandin E/metabolism , Thiophenes/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacokinetics , Animals , Benzoates/chemistry , Benzoates/pharmacokinetics , Cyclopropanes/chemistry , Cyclopropanes/pharmacokinetics , Half-Life , Humans , Magnetic Resonance Spectroscopy , Male , Pain/drug therapy , Prostaglandin Antagonists/chemistry , Prostaglandin Antagonists/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E/antagonists & inhibitors , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacokinetics
14.
Bioorg Med Chem Lett ; 18(8): 2696-700, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18359630

ABSTRACT

A new series of indole-based antagonists of the PGD(2) receptor subtype 1 (DP1 receptor) was identified and the progress of the structure-activity relationship study to the identification of potent and selective antagonists is presented. Selective DP1 antagonists with high potency and selectivity were prepared. Of particular interest is the DP1 antagonist 26 with a K(i) value of 1 nM for the DP1 receptor and an IC(50) value of 4.6 nM in a DP1 functional assay for the inhibition of the PGD(2) induced cAMP production in platelet rich plasma (PRP).


Subject(s)
Hydrogen/chemistry , Indoles/chemical synthesis , Indoles/pharmacology , Pyridines/chemistry , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Humans , Indoles/chemistry , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
15.
Am J Respir Cell Mol Biol ; 39(1): 26-35, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18258919

ABSTRACT

Interleukin 13 (IL-13) is considered to be a key driver of the development of airway allergic inflammation and remodeling leading to airway hyperresponsiveness (AHR). How precisely IL-13 leads to the development of airway inflammation, AHR, and mucus production is not fully understood. In order to identify key mediators downstream of IL-13, we administered adenovirus IL-13 to specifically induce IL-13-dependent inflammation in the lungs of mice. This approach was shown to induce cardinal features of lung disease, specifically airway inflammation, elevated cytokines, AHR, and mucus secretion. Notably, the model is resistant to corticosteroid treatment and is characterized by marked neutrophilia, two hallmarks of more severe forms of asthma. To identify IL-13-dependent mediators, we performed a limited-scale two-dimensional SDS-PAGE proteomic analysis and identified proteins significantly modulated in this model. Intriguingly, several identified proteins were unique to this model, whereas others correlated with those modulated in a mouse ovalbumin-induced pulmonary inflammation model. We corroborated this approach by illustrating that proteomic analysis can identify known pathways/mediators downstream of IL-13. Thus, we have characterized a murine adenovirus IL-13 lung model that recapitulates specific disease traits observed in human asthma, and have exploited this model to identify effectors downstream of IL-13. Collectively, these findings will enable a broader appreciation of IL-13 and its impact on disease pathways in the lung.


Subject(s)
Adenoviridae Infections/physiopathology , Adenoviridae , Airway Obstruction/chemically induced , Interleukin-13/adverse effects , Adenoviridae/genetics , Animals , Cell Culture Techniques , Cell Division , Disease Models, Animal , Interleukin-13/genetics , Male , Mice , Mice, Inbred BALB C , Mucus/metabolism , Ovalbumin/adverse effects , Respiratory Function Tests , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Reverse Transcriptase Polymerase Chain Reaction
16.
Am J Respir Crit Care Med ; 177(4): 402-11, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17975202

ABSTRACT

RATIONALE: Chronic obstructive lung disease (COPD) is a common and disabling lung disease for which there are few therapeutic options. OBJECTIVES: We reasoned that gene expression profiling of COPD lungs could reveal previously unidentified disease pathways. METHODS: Forty-eight human lung samples were obtained from tissue resected from five nonsmokers, 21 GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage 0, 9 GOLD stage 1, 10 GOLD stage 2, and 3 GOLD stage 3 patients. mRNA from the specimens was profiled using Agilent's Functional ID v2.0 array (Agilent, Santa Clara, CA) containing 23,720 sequences. MEASUREMENTS AND MAIN RESULTS: The gene expression pattern was influenced by the percentage of the sample made up of parenchyma. Gene expression was related to forced expiratory flow between 25 and 75% of forced expiratory volume (FEF(25-75%) % predicted) revealing a signature gene set of 203 transcripts. Genes involved in extracellular matrix synthesis/degradation and apoptosis were among the up-regulated genes, whereas genes that participate in antiinflammatory responses were down-regulated. Immunohistochemistry confirmed expression of urokinase plasminogen activator (PLAU), urokinase plasminogen activator receptor (PLAUR), and thrombospondin (THBS1) by alveolar macrophages and airway epithelial cells. Genes in this pathway have been shown to be involved in the activation of transforming growth factor (TGF)-beta1 and matrix metalloproteinases and are subject to inhibition by SERPINE2. Interestingly, both TGF-beta1 and SERPINE2 have been identified as candidate genes in COPD genetic linkage and association studies. CONCLUSIONS: The results provide evidence that genes involved in tissue remodeling and repair are differentially regulated in the lungs of obstructed smokers and suggest that they are potential therapeutic targets. Data deposited in GEO at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8500.


Subject(s)
Gene Expression Profiling , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation , Humans , Immediate-Early Proteins/genetics , Immunohistochemistry , Male , Oligonucleotide Array Sequence Analysis , Predictive Value of Tests , Probability , RNA, Messenger/analysis , Sampling Studies , Sensitivity and Specificity , Smoking/genetics , Smoking/pathology , Tissue Culture Techniques
17.
J Med Chem ; 50(4): 794-806, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17300164

ABSTRACT

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats. Rat bile duct cannulation studies revealed that high concentrations of parent drug were present in the biliary fluid (Cmax = 1100 microM for 6 and 3900 microM for 7). This pharmacokinetic liability was circumvented by replacing the 7-methylsulfone substituent present in 6 and 7 with a fluorine atom resulting in antagonists with diminished propensity for biliary excretion and with superior pharmacokinetic profiles. Further optimization led to the discovery of the potent and selective DP antagonist 13.


Subject(s)
Indoles/chemical synthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Airway Obstruction/drug therapy , Animals , Bile/metabolism , Binding, Competitive , Dogs , Hepatocytes/metabolism , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca fascicularis , Male , Mice , Microsomes/metabolism , Nasal Decongestants/chemical synthesis , Nasal Decongestants/pharmacokinetics , Nasal Decongestants/pharmacology , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Stereoisomerism , Structure-Activity Relationship
18.
J Biol Chem ; 281(34): 24704-12, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16790440

ABSTRACT

Neuropeptide S (NPS) and its receptor (NPSR) are thought to have a role in asthma pathogenesis; a number of single nucleotide polymorphisms within NPSR have been shown to be associated with an increased prevalance of asthma. One such single nucleotide polymorphism leads to the missense mutation N107I, which results in an increase in the potency of NPS for NPSR. To gain insight into structure-function relationships within NPS and NPSR, we first carried out a limited structural characterization of NPS and subjected the peptide to extensive mutagenesis studies. Our results show that the NH(2)-terminal third of NPS, in particular residues Phe-2, Arg-3, Asn-4, and Val-6, are necessary and sufficient for activation of NPSR. Furthermore, part of a nascent helix within the peptide, spanning residues 5 through 13, acts as a regulatory region that inhibits receptor activation. Notably, this inhibition is absent in the asthma-linked N107I variant of NPSR, suggesting that residue 107 interacts with the aforementioned regulatory region of NPS. Whereas this interaction may be at the root of the increase in potency associated with the N107I variant, we show here that the mutation also causes an increase in cell-surface expression of the mutant receptor, leading to a concomitant increase in the maximal efficacy (E(max)) of NPS. Our results identify the key residues of NPS involved in NPSR activation and suggest a molecular basis for the functional effects of the N107I mutation and for its putative pathophysiological link with asthma.


Subject(s)
Receptors, Neuropeptide/chemistry , Amino Acid Sequence , Asthma/genetics , Asthma/metabolism , Cell Line , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/metabolism , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Structure-Activity Relationship , Transfection
19.
Proc Natl Acad Sci U S A ; 103(17): 6682-7, 2006 Apr 25.
Article in English | MEDLINE | ID: mdl-16617107

ABSTRACT

Nicotinic acid (NA) is commonly used to treat dyslipidemia, but it elicits an adverse effect, termed flushing, which consists of cutaneous vasodilation with associated discomfort. An animal model of NA-induced flushing has been established in mice. As in humans, NA stimulated vasodilation in a dose-dependent manner, was associated with an increase of the vasodilatory prostaglandin (PG) D2 in plasma and could be blocked by pretreatment with aspirin. Two PGD2 receptors have been identified: PGD2 receptor 1 (DP1, also called DP) and PGD2 receptor 2 (DP2, sometimes termed CRTH2). DP2 does not mediate NA-induced vasodilation; the DP2-specific agonist DK-PGD2 (13,14-dihydro-15-keto-PGD2) did not induce cutaneous vasodilation, and DP2-/- mice had a normal vasodilatory response to NA. By contrast, BW245C, a DP1-selective agonist, induced vasodilation in mice, and MK-0524, a DP1-selective antagonist, blocked both PGD2- and NA-induced vasodilation. NA-induced vasodilation was also studied in DP1+/+, DP1+/-, and DP1-/- mice; although NA-induced vasodilation depended almost completely on DP1 in female mice, it depended only partially on DP1 in male mice. The residual NA-induced vasodilation in male DP-/- mice was aspirin-sensitive. Thus, in the mouse, DP1 appears to be an important component involved in NA-induced vasodilation, but other cyclooxygenase-dependent mechanisms also may be involved. A clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA. These studies suggest that DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans.


Subject(s)
Niacin/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Vasodilation/drug effects , Vasodilation/physiology , Adolescent , Adult , Animals , Aspirin/pharmacology , Female , Flushing/drug therapy , Flushing/physiopathology , Humans , Hydantoins/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Prostaglandin D2/analogs & derivatives , Prostaglandin D2/pharmacology , Prostaglandin-Endoperoxide Synthases/physiology , Receptors, Immunologic/agonists , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Receptors, Prostaglandin/agonists , Receptors, Prostaglandin/deficiency , Receptors, Prostaglandin/genetics
20.
Bioorg Med Chem Lett ; 16(11): 3043-8, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16529930

ABSTRACT

A novel indole series of PGD2 receptor (DP receptor) antagonists is presented. Optimization of this series led to the identification of potent and selective DP receptor antagonists. In particular, antagonists 35 and 36 were identified with Ki values of 2.6 and 1.8 nM, respectively. These two antagonists are also potent in a DP functional assay where they inhibit the PGD2 induced cAMP production in platelet rich plasma with IC50 values of 7.9 and 8.6 nM, respectively. The structure-activity relationships of this indole series of DP receptor antagonists will also be discussed.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Indoles/chemical synthesis , Molecular Structure , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Safrole/analogs & derivatives , Safrole/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL