Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337528

ABSTRACT

mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.


Subject(s)
Protein Binding , Proto-Oncogene Proteins c-ets , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Cell Line, Tumor , Sirolimus/pharmacology , Animals , Protein Domains , Phosphorylation , Mechanistic Target of Rapamycin Complex 1/metabolism , HEK293 Cells
2.
Nature ; 632(8027): 1082-1091, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39143224

ABSTRACT

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.


Subject(s)
Genome, Human , Genomics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Female , Humans , Male , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Epigenomics , Gene Expression Regulation, Leukemic , Genome, Human/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Single-Cell Analysis , Transcriptome/genetics , T-Lymphocytes/cytology , T-Lymphocytes/pathology
3.
Curr Opin Struct Biol ; 88: 102906, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142260

ABSTRACT

While the structure/function paradigm for folded domains was established decades ago, our understanding of how intrinsically disordered regions (IDRs) contribute to biological function is still evolving. IDRs exist as conformational ensembles that can range from highly compact to highly extended depending on their sequence composition. IDR sequences are less conserved than those of folded domains, but often display short, conserved segments termed short linear motifs (SLiMs), that often mediate protein-protein interactions and are often regulated by posttranslational modifications, giving rise to complex functionality when multiple, differently regulated SLiMs are combined. This combinatorial functionality was associated with signaling and regulation soon after IDRs were first recognized as functional elements within proteins. Here, we discuss roles for disorder in proteins that regulate cyclin-dependent kinases, the master timekeepers of the eukaryotic cell cycle. We illustrate the importance of intrinsic flexibility in the transmission of regulatory signals by these entirely disordered proteins.


Subject(s)
Cyclin-Dependent Kinases , Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/chemistry , Animals
4.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649740

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Subject(s)
Biomolecular Condensates , Molecular Dynamics Simulation , Scattering, Small Angle , Biomolecular Condensates/chemistry , Fluorescence Recovery After Photobleaching , Neutron Diffraction , Macromolecular Substances/chemistry , Proteins/chemistry
5.
Blood ; 144(1): 61-73, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38551807

ABSTRACT

ABSTRACT: Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO-treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of the response and resistance to InO. Pre- and post-InO-treated patient samples were analyzed by whole genome, exome, and/or transcriptome sequencing. Acquired CD22 mutations were observed in 11% (3/27) of post-InO-relapsed tumor samples, but not in refractory samples (0/16). There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included epitope loss (protein truncation and destabilization) and epitope alteration. Two CD22 mutant cases were post-InO hyper-mutators resulting from error-prone DNA damage repair (nonhomologous/alternative end-joining repair, or mismatch repair deficiency), suggesting that hypermutation drove escape from CD22-directed therapy. CD22-mutant relapses occurred after InO and subsequent hematopoietic stem cell transplantation (HSCT), suggesting that InO eliminated the predominant clones, leaving subclones with acquired CD22 mutations that conferred resistance to InO and subsequently expanded. Acquired loss-of-function mutations in TP53, ATM, and CDKN2A were observed, consistent with a compromise of the G1/S DNA damage checkpoint as a mechanism for evading InO-induced apoptosis. Genome-wide CRISPR/Cas9 screening of cell lines identified DNTT (terminal deoxynucleotidyl transferase) loss as a marker of InO resistance. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. Our findings highlight the importance of defining the basis of CD22 escape and eradication of residual disease before HSCT. The identified mechanisms of escape from CD22-targeted therapy extend beyond antigen loss and provide opportunities to improve therapeutic approaches and overcome resistance. These trials were registered at www.ClinicalTrials.gov as NCT01134575, NCT01371630, and NCT03441061.


Subject(s)
Drug Resistance, Neoplasm , Inotuzumab Ozogamicin , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Sialic Acid Binding Ig-like Lectin 2 , Humans , Sialic Acid Binding Ig-like Lectin 2/genetics , Drug Resistance, Neoplasm/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Female , Mutation , Male , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Adult , Middle Aged , Retrospective Studies , Adolescent
6.
bioRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-37873180

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

7.
Article in English | MEDLINE | ID: mdl-38050059

ABSTRACT

TP53 plays a critical role as a tumor suppressor by controlling cell cycle progression, DNA repair, and apoptosis. Post-translational modifications such as acetylation of specific lysine residues in the DNA binding and carboxy-terminus regulatory domains modulate its tumor suppressor activities. In this study, we addressed the functional consequences of the germline TP53 p.K164E (NM_000546.5: c.490A>G) variant identified in a patient with early-onset breast cancer and a significant family history of cancer. K164 is a conserved residue located in the L2 loop of the p53 DNA binding domain that is post-translationally modified by acetylation. In silico, in vitro, and in vivo analyses demonstrated that the glutamate substitution at K164 marginally destabilizes the p53 protein structure but significantly impairs sequence-specific DNA binding, transactivation, and tumor cell growth inhibition. Although p.K164E is currently considered a variant of unknown significance by different clinical genetic testing laboratories, the clinical and laboratory-based findings presented here provide strong evidence to reclassify TP53 p.K164E as a likely pathogenic variant.


Subject(s)
Germ-Line Mutation , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Acetylation , Germ-Line Mutation/genetics , Protein Processing, Post-Translational/genetics , DNA/metabolism , Germ Cells/metabolism
8.
medRxiv ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38106221

ABSTRACT

Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of response to InO. Acquired CD22 mutations were observed in 11% (3/27) of post-InO relapsed tumor samples. There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included protein truncation, protein destabilization, and epitope alteration. Hypermutation by error-prone DNA damage repair (alternative end-joining, mismatch repair deficiency) drove CD22 escape. Acquired loss-of-function mutations in TP53 , ATM and CDKN2A were observed, suggesting compromise of the G1/S DNA damage checkpoint as a mechanism of evading InO-induced apoptosis. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. The escape strategies within and beyond antigen loss to CD22-targeted therapy elucidated in this study provide insights into improving therapeutic approaches and overcoming resistance. KEY POINTS: We identified multiple mechanisms of CD22 antigen escape from inotuzumab ozogamicin, including protein truncation, protein destabilization, and epitope alteration.Hypermutation caused by error-prone DNA damage repair was a driver of CD22 mutation and escape.

9.
Res Sq ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106181

ABSTRACT

NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex remain elusive. Here we show that NPM1 sequesters p14ARF within phase-separated condensates, facilitating the assembly of p14ARF into a gel-like meso-scale network. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and ß-strands within a partially folded N-terminal domain of p14ARF. Those hydrophobic interactions promote phase separation with NPM1, enhance nucleolar partitioning of p14ARF, restrict p14ARF and NPM1 diffusion within condensates and in nucleoli, and reduce cell viability. Our structural model provides novel insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.

10.
Res Sq ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37886520

ABSTRACT

The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.

11.
RSC Chem Biol ; 2(5): 1462-1465, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34704049

ABSTRACT

In nitrogenase biosynthesis, the iron-molybdenum cofactor (FeMo-co) is externally assembled at scaffold proteins and delivered to the NifDK nitrogenase component by the NafY metallochaperone. Here we have used nuclear magnetic resonance, molecular dynamics, and functional analysis to elucidate the environment and coordination of FeMo-co in NafY. H121 stands as the key FeMo-co ligand. Regions near FeMo-co diverge from H121 and include the η1, α1, α2 helical lobe and a narrow path between H121 and C196.

12.
Curr Opin Struct Biol ; 60: 1-6, 2020 02.
Article in English | MEDLINE | ID: mdl-31629249

ABSTRACT

Eukaryotic cells are highly complex systems; however, they manage to attain this complexity with a surprisingly small number of protein products. This is due, in part, to the fact that the functions of the eukaryotic proteome can be modulated and controlled by a vast network of largely reversible post-translational modifications. Such modifications change the chemical nature of certain amino acid side chains and thereby can be used to modulate diverse protein functions such as enzyme activity and binding events. Here we review recent advances in the characterization of the native mechanisms by which cells utilize post-translational modifications to send biological signals as well as recent successes in engineering such systems. We highlight roles for protein disorder in signal propagation in these systems.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Animals , Humans , Intrinsically Disordered Proteins/chemistry , Protein Processing, Post-Translational
13.
Nat Commun ; 10(1): 1676, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976006

ABSTRACT

p27Kip1 is an intrinsically disordered protein (IDP) that inhibits cyclin-dependent kinase (Cdk)/cyclin complexes (e.g., Cdk2/cyclin A), causing cell cycle arrest. Cell division progresses when stably Cdk2/cyclin A-bound p27 is phosphorylated on one or two structurally occluded tyrosine residues and a distal threonine residue (T187), triggering degradation of p27. Here, using an integrated biophysical approach, we show that Cdk2/cyclin A-bound p27 samples lowly-populated conformations that provide access to the non-receptor tyrosine kinases, BCR-ABL and Src, which phosphorylate Y88 or Y88 and Y74, respectively, thereby promoting intra-assembly phosphorylation (of p27) on distal T187. Even when tightly bound to Cdk2/cyclin A, intrinsic flexibility enables p27 to integrate and process signaling inputs, and generate outputs including altered Cdk2 activity, p27 stability, and, ultimately, cell cycle progression. Intrinsic dynamics within multi-component assemblies may be a general mechanism of signaling by regulatory IDPs, which can be subverted in human disease.


Subject(s)
Cell Division/physiology , Cyclin A/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Crystallography, X-Ray , Cyclin A/isolation & purification , Cyclin-Dependent Kinase 2/isolation & purification , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/isolation & purification , Fusion Proteins, bcr-abl/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Phosphorylation/physiology , Protein Binding/physiology , Protein Processing, Post-Translational/physiology , Protein Structure, Tertiary/physiology , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Signal Transduction/physiology , Threonine/metabolism , Tyrosine/metabolism , src-Family Kinases/isolation & purification , src-Family Kinases/metabolism
14.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30981631

ABSTRACT

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Nuclear Proteins/genetics , Repetitive Sequences, Amino Acid/genetics , Amyotrophic Lateral Sclerosis/pathology , Arginine/genetics , Cell Nucleolus/chemistry , Cell Nucleolus/genetics , Dipeptides/genetics , Humans , Nucleophosmin , Peptides/genetics , Poly A/genetics , RNA, Ribosomal/genetics
15.
Article in English | MEDLINE | ID: mdl-30886117

ABSTRACT

Li-Fraumeni syndrome (LFS) is a highly penetrant cancer predisposition syndrome caused by heterozygous germline mutations in the TP53 gene. Although more than 200 missense and null TP53 mutations are well established as disease-causing, little is known about the pathogenicity and cancer risks associated with small in-frame deletions. This leads to challenges in variant classification and subsequent difficulty making a molecular diagnosis. We report the genetic testing process for a pediatric patient diagnosed with an undifferentiated high-grade brain tumor following his mother's diagnosis of early-onset bilateral breast cancer. Sequential testing revealed that both harbored a heterozygous three-nucleotide deletion in exon 7 of TP53 (c.764_766delTCA; I255del), which was classified as a variant of uncertain significance. Because the maternal family history was void of any other LFS spectrum tumors, additional information was needed to effectively classify the variant. Targeted TP53 testing of the patient's maternal grandparents confirmed that neither carried the variant; this new de novo data upgraded the variant classification to likely pathogenic. To assess the impact of this mutation on the encoded p53 protein, additional in vitro analyses were performed. Structural modeling predicted that the deletion of isoleucine at codon 255 would disrupt the architecture of the DNA-binding domain, suggesting that it might negatively impact p53 function. Consistent with this notion, the I255del mutant protein exhibited significantly impaired transcriptional activity and greatly reduced growth suppressive properties, similar to more well-characterized LFS-associated p53 mutants. This report illustrates the importance of seeking additional evidence to assign proper pathogenicity classification, which enables optimal genetic counseling and medical management of individuals with LFS and their at-risk relatives.


Subject(s)
Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , Adult , Breast Neoplasms/genetics , Child, Preschool , Female , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation/genetics , Heterozygote , Humans , Male , Middle Aged , Pedigree , Sequence Deletion/genetics , Tumor Suppressor Protein p53/metabolism
16.
Nat Chem Biol ; 14(5): 458-465, 2018 05.
Article in English | MEDLINE | ID: mdl-29507390

ABSTRACT

Intrinsically disordered regions (IDRs) of proteins often regulate function upon post-translational modification (PTM) through interactions with folded domains. An IDR linking two α-helices (α1-α2) of the antiapoptotic protein Bcl-xL experiences several PTMs that reduce antiapoptotic activity. Here, we report that PTMs within the α1-α2 IDR promote its interaction with the folded core of Bcl-xL that inhibits the proapoptotic activity of two types of regulatory targets, BH3-only proteins and p53. This autoregulation utilizes an allosteric pathway whereby, in one direction, the IDR induces a direct displacement of p53 from Bcl-xL coupled to allosteric displacement of simultaneously bound BH3-only partners. This pathway operates in the opposite direction when the BH3-only protein PUMA binds to the BH3 binding groove of Bcl-xL, directly displacing other bound BH3-only proteins, and allosterically remodels the distal site, displacing p53. Our findings show how an IDR enhances functional versatility through PTM-dependent allosteric regulation of a folded protein domain.


Subject(s)
Apoptosis , Gene Expression Regulation , Intrinsically Disordered Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/metabolism , Allosteric Site , Binding Sites , Humans , Intrinsically Disordered Proteins/genetics , Kinetics , Mutation , Protein Binding , Protein Domains , Protein Folding , Protein Processing, Post-Translational , Protein Structure, Secondary , Signal Transduction , bcl-X Protein/genetics
17.
J Mol Biol ; 430(6): 751-758, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29410088

ABSTRACT

p27 mediates cell cycle arrest by binding to and inhibiting cyclin-dependent kinase/cyclin complexes, but p27 can also contribute to pro-oncogenic signaling upon mislocalization to the cytoplasm. Cytoplasmic p27 stimulates cell migration by associating with RhoA and interfering with the exchange of GDP from RhoA stimulated by guanine nucleotide exchange factors. We used biophysical methods to show that the N-terminus of p27 directly interacts with RhoA in vitro. The affinity of p27 for RhoA is low, with an equilibrium dissociation constant of hundreds of micromolar; however, at high concentrations, p27 interfered with guanine nucleotide exchange factor-mediated nucleotide exchange from RhoA. We also show that promotion of cell migration in scratch wound cell healing assays requires full-length p27 despite the C-terminus being dispensable for the direct interaction between p27 and RhoA in vitro. These results suggest that there may be an unidentified factor(s) that associates with the C-terminus of p27 to enhance its interactions with RhoA and promote cell migration.


Subject(s)
Cell Movement/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Mapping , rhoA GTP-Binding Protein/metabolism , Cell Cycle , Cytoplasm/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Models, Molecular , Phosphorylation , Signal Transduction
18.
Nat Commun ; 9(1): 842, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483575

ABSTRACT

Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.


Subject(s)
Cell Nucleolus/chemistry , Intrinsically Disordered Proteins/chemistry , Nuclear Proteins/chemistry , Binding Sites , Cell Nucleolus/metabolism , Cell Nucleolus/ultrastructure , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Kinetics , Models, Molecular , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Organelle Biogenesis , Phase Transition , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Static Electricity
19.
Nat Commun ; 8(1): 1547, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29146910

ABSTRACT

The overall survival of patients with acute myeloid leukemia (AML) is poor and identification of new disease-related therapeutic targets remains a major goal for this disease. Here we show that expression of MPP1, a PDZ-domain-containing protein, highly correlated with ABCC4 in AML, is associated with worse overall survival in AML. Murine hematopoietic progenitor cells overexpressing MPP1 acquired the ability to serially replate in methylcellulose culture, a property crucially dependent upon ABCC4. The highly conserved PDZ-binding motif of ABCC4 is required for ABCC4 and MPP1 to form a protein complex, which increased ABCC4 membrane localization and retention, to enhance drug resistance. Specific disruption of this protein complex, either genetically or chemically, removed ABCC4 from the plasma membrane, increased drug sensitivity, and abrogated MPP1-dependent hematopoietic progenitor cell replating in methylcellulose. High-throughput screening identified Antimycin A as a small molecule that disrupted the ABCC4-MPP1 protein complex and reversed drug resistance in AML cell lines and in primary patient AML cells. In all, targeting the ABCC4-MPP1 protein complex can lead to new therapies to improve treatment outcome of AML, a disease where the long-term prognosis is poor.


Subject(s)
Blood Proteins/metabolism , Drug Resistance, Neoplasm , Leukemia, Myeloid/metabolism , Membrane Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Acute Disease , Animals , Antimycin A/pharmacology , Blood Proteins/genetics , Cell Line, Tumor , Female , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Membrane Proteins/genetics , Mice , Multidrug Resistance-Associated Proteins/genetics , Protein Binding/drug effects
20.
Nature ; 547(7663): 311-317, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726821

ABSTRACT

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Whole Genome Sequencing , Carcinogenesis/genetics , Carrier Proteins/genetics , Cohort Studies , DNA Methylation , Datasets as Topic , Epistasis, Genetic , Genomics , Humans , Molecular Targeted Therapy , Muscle Proteins/genetics , Mutation , Oncogenes/genetics , Transcription Factors/genetics , Wnt Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL