Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 181(7): 1028-1050, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37698384

ABSTRACT

BACKGROUND AND PURPOSE: Select neuroactive steroids tune neural activity by modulating excitatory and inhibitory neurotransmission, including the endogenous cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC), which is an N-methyl-d-aspartate (NMDA) receptor positive allosteric modulator (PAM). NMDA receptor PAMs are potentially an effective pharmacotherapeutic strategy to treat conditions associated with NMDA receptor hypofunction. EXPERIMENTAL APPROACH: Using in vitro and in vivo electrophysiological recording experiments and behavioural approaches, we evaluated the effect of SAGE-718, a novel neuroactive steroid NMDA receptor PAM currently in clinical development for the treatment of cognitive impairment, on NMDA receptor function and endpoints that are altered by NMDA receptor hypoactivity and assessed its safety profile. KEY RESULTS: SAGE-718 potentiated GluN1/GluN2A-D NMDA receptors with equipotency and increased NMDA receptor excitatory postsynaptic potential (EPSP) amplitude without affecting decay kinetics in striatal medium spiny neurons. SAGE-718 increased the rate of unblock of the NMDA receptor open channel blocker ketamine on GluN1/GluN2A in vitro and accelerated the rate of return on the ketamine-evoked increase in gamma frequency band power, as measured with electroencephalogram (EEG), suggesting that PAM activity is driven by increased channel open probability. SAGE-718 ameliorated deficits due to NMDA receptor hypofunction, including social deficits induced by subchronic administration of phencyclidine, and behavioural and electrophysiological deficits from cholesterol and 24(S)-HC depletion caused by 7-dehydrocholesterol reductase inhibition. Finally, SAGE-718 did not produce epileptiform activity in a seizure model or neurodegeneration following chronic dosing. CONCLUSIONS AND IMPLICATIONS: These findings provide strong evidence that SAGE-718 is a neuroactive steroid NMDA receptor PAM with a mechanism that is well suited as a treatment for conditions associated with NMDA receptor hypofunction.


Subject(s)
Ketamine , Neurosteroids , Receptors, N-Methyl-D-Aspartate/metabolism , Ketamine/pharmacology , Hydroxycholesterols/pharmacology , Cholesterol , Allosteric Regulation
2.
Cell Mol Life Sci ; 80(2): 42, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36645496

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Neurosteroids , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neurosteroids/pharmacology , Neurosteroids/therapeutic use , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Alzheimer Disease/drug therapy , Steroids/pharmacology , Allosteric Regulation/physiology
3.
J Med Chem ; 65(13): 9063-9075, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35785990

ABSTRACT

N-Methyl-d-aspartate receptor (NMDAR) positive allosteric modulators (PAMs) have received increased interest as a powerful mechanism of action to provide relief as therapies for CNS disorders. Sage Therapeutics has previously published the discovery of endogenous neuroactive steroid 24(S)-hydroxycholesterol as an NMDAR PAM. In this article, we detail the discovery of development candidate SAGE-718 (5), a potent and high intrinsic activity NMDAR PAM with an optimized pharmacokinetic profile for oral dosing. Compound 5 has completed phase 1 single ascending dose and multiple ascending dose clinical trials and is currently undergoing phase 2 clinical trials for treatment of cognitive impairment in Huntington's disease.


Subject(s)
Central Nervous System Diseases , Cognitive Dysfunction , Neurosteroids , Allosteric Regulation , Cognitive Dysfunction/drug therapy , Humans , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Neuropharmacology ; 181: 108333, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32976892

ABSTRACT

Zuranolone (SAGE-217) is a novel, synthetic, clinical stage neuroactive steroid GABAA receptor positive allosteric modulator designed with the pharmacokinetic properties to support oral daily dosing. In vitro, zuranolone enhanced GABAA receptor current at nine unique human recombinant receptor subtypes, including representative receptors for both synaptic (γ subunit-containing) and extrasynaptic (δ subunit-containing) configurations. At a representative synaptic subunit configuration, α1ß2γ2, zuranolone potentiated GABA currents synergistically with the benzodiazepine diazepam, consistent with the non-competitive activity and distinct binding sites of the two classes of compounds at synaptic receptors. In a brain slice preparation, zuranolone produced a sustained increase in GABA currents consistent with metabotropic trafficking of GABAA receptors to the cell surface. In vivo, zuranolone exhibited potent activity, indicating its ability to modulate GABAA receptors in the central nervous system after oral dosing by protecting against chemo-convulsant seizures in a mouse model and enhancing electroencephalogram ß-frequency power in rats. Together, these data establish zuranolone as a potent and efficacious neuroactive steroid GABAA receptor positive allosteric modulator with drug-like properties and CNS exposure in preclinical models. Recent clinical data support the therapeutic promise of neuroactive steroid GABAA receptor positive modulators for treating mood disorders; brexanolone is the first therapeutic approved specifically for the treatment of postpartum depression. Zuranolone is currently under clinical investigation for the treatment of major depressive episodes in major depressive disorder, postpartum depression, and bipolar depression.


Subject(s)
Anticonvulsants/pharmacology , GABA Modulators/pharmacology , GABA-A Receptor Agonists/pharmacology , Pregnanes/pharmacology , Pyrazoles/pharmacology , Steroids/pharmacology , Animals , Anticonvulsants/pharmacokinetics , Antidepressive Agents/pharmacology , Binding Sites/drug effects , Brain/drug effects , Brain/metabolism , Diazepam/pharmacology , Drug Synergism , Electroencephalography/drug effects , Hippocampus/drug effects , Humans , Male , Mice , Pregnanes/pharmacokinetics , Pyrazoles/pharmacokinetics , Rats, Sprague-Dawley , Receptors, GABA/drug effects , Seizures/chemically induced , Seizures/prevention & control , gamma-Aminobutyric Acid/physiology
5.
J Med Chem ; 62(16): 7526-7542, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31390523

ABSTRACT

Neuroactive steroids (NASs) play a pivotal role in maintaining homeostasis is the CNS. We have discovered that one NAS in particular, 24(S)-hydroxycholesterol (24(S)-HC), is a positive allosteric modulator (PAM) of NMDA receptors. Using 24(S)-HC as a chemical starting point, we have identified other NASs that have good in vitro potency and efficacy. Herein, we describe the structure activity relationship and pharmacokinetic optimization of this series that ultimately led to SGE-301 (42). We demonstrate that SGE-301 enhances long-term potentiation (LTP) in rat hippocampal slices and, in a dose-dependent manner, improves cognition in a rat social recognition study.


Subject(s)
Allosteric Regulation , Neurosteroids/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Age Factors , Animals , Cognition/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Humans , Long-Term Potentiation/drug effects , Male , Methylation , Molecular Structure , Neurosteroids/chemistry , Neurosteroids/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship
6.
J Med Chem ; 62(13): 5979-6002, 2019 07 11.
Article in English | MEDLINE | ID: mdl-30721063

ABSTRACT

Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.


Subject(s)
Ion Channels/agonists , Ion Channels/antagonists & inhibitors , Neurotransmitter Agents/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Allosteric Regulation , Animals , Brain Diseases/drug therapy , Drug Design , Humans , Molecular Structure , Neurotransmitter Agents/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 60(18): 7810-7819, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28753313

ABSTRACT

Certain classes of neuroactive steroids (NASs) are positive allosteric modulators (PAM) of synaptic and extrasynaptic GABAA receptors. Herein, we report new SAR insights in a series of 5ß-nor-19-pregnan-20-one analogues bearing substituted pyrazoles and triazoles at C-21, culminating in the discovery of 3α-hydroxy-3ß-methyl-21-(4-cyano-1H-pyrazol-1'-yl)-19-nor-5ß-pregnan-20-one (SAGE-217, 3), a potent GABAA receptor modulator at both synaptic and extrasynaptic receptor subtypes, with excellent oral DMPK properties. Compound 3 has completed a phase 1 single ascending dose (SAD) and multiple ascending dose (MAD) clinical trial and is currently being studied in parallel phase 2 clinical trials for the treatment of postpartum depression (PPD), major depressive disorder (MDD), and essential tremor (ET).


Subject(s)
Allosteric Regulation/drug effects , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacology , Pregnanolone/analogs & derivatives , Receptors, GABA-A/metabolism , Animals , Depression, Postpartum/drug therapy , Depressive Disorder, Major/drug therapy , Female , GABA-A Receptor Agonists/pharmacokinetics , Mice , Pregnanolone/chemistry , Pregnanolone/pharmacokinetics , Pregnanolone/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats
8.
Epilepsy Res ; 134: 16-25, 2017 08.
Article in English | MEDLINE | ID: mdl-28521115

ABSTRACT

Despite the availability of multiple antiepileptic drugs (AED), failure to adequately control seizures is a challenge for approximately one third of epilepsy patients, and new therapies with a differentiated mechanism of action are needed. The neuroactive steroid, SGE-516, is a positive allosteric modulator of both gamma- and delta-containing GABAA receptors. This broad GABAA receptor activity differentiates neuroactive steroids like SGE-516 from benzodiazepines, a class of anticonvulsants which have been shown in vitro to selectively target gamma-subunit containing GABAA receptors. As a neuroactive steroid, SGE-516 has pharmacokinetic properties that are intended to allow for chronic oral dosing. We investigated the anticonvulsant activity of SGE-516 across numerous in vitro and in vivo models of seizure activity. SGE-516 dose-dependently reduced neuronal firing rates and epileptiform activity in vitro. In mice, SGE-516 protected against acute seizures in the PTZ-induced chemo-convulsant seizure model and the 6Hz psychomotor seizure model. In addition, SGE-516 demonstrated anticonvulsant activity in the mouse corneal kindling model. These data suggest that SGE-516 may have potential for development as a novel oral AED for the treatment of refractory seizures.


Subject(s)
Anticonvulsants/therapeutic use , Disease Models, Animal , Pregnanolone/therapeutic use , Seizures/drug therapy , Action Potentials/drug effects , Action Potentials/genetics , Animals , Convulsants/toxicity , Electroshock/adverse effects , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Hippocampus/cytology , Kindling, Neurologic/drug effects , Male , Mice , Mice, Knockout , Pentylenetetrazole/toxicity , Piperidines/pharmacology , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Seizures/etiology , Seizures/genetics , gamma-Aminobutyric Acid/pharmacology
9.
Epilepsy Behav ; 68: 22-30, 2017 03.
Article in English | MEDLINE | ID: mdl-28109985

ABSTRACT

Organophosphorus nerve agents (OPNAs) are irreversible inhibitors of acetylcholinesterase that pose a serious threat to public health because of their use as chemical weapons. Exposure to high doses of OPNAs can dramatically potentiate cholinergic synaptic activity and cause status epilepticus (SE). Current standard of care for OPNA exposure involves treatment with cholinergic antagonists, oxime cholinesterase reactivators, and benzodiazepines. However, data from pre-clinical models suggest that OPNA-induced SE rapidly becomes refractory to benzodiazepines. Neuroactive steroids (NAS), such as allopregnanolone, retain anticonvulsant activity in rodent models of benzodiazepine-resistant SE, perhaps because they modulate a broader variety of GABAA receptor subtypes. SGE-516 is a novel, next generation NAS and a potent and selective GABAA receptor positive allosteric modulator (PAM). The present study first established that SGE-516 reduced electrographic seizures in the rat lithium-pilocarpine model of pharmacoresistant SE. Then the anticonvulsant activity of SGE-516 was investigated in the soman-intoxication model of OPNA-induced SE. SGE-516 (5.6, 7.5, and 10mg/kg, IP) significantly reduced electrographic seizure activity compared to control when administered 20min after SE onset. When 10mg/kg SGE-516 was administered 40min after SE onset, seizure activity was still significantly reduced compared to control. In addition, all cohorts of rats treated with SGE-516 exhibited significantly reduced neuronal cell death as measured by FluoroJade B immunohistochemistry. These data suggest synthetic NASs that positively modulate both synaptic and extrasynaptic GABAA receptors may be candidates for further study in the treatment of OPNA-induced SE.


Subject(s)
Anticonvulsants/pharmacology , Cell Death/drug effects , GABA Modulators/pharmacology , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Seizures/drug therapy , Soman , Status Epilepticus/drug therapy , Animals , Anticonvulsants/therapeutic use , Convulsants , GABA Modulators/therapeutic use , Male , Neurotransmitter Agents/therapeutic use , Pilocarpine , Rats , Rats, Sprague-Dawley , Seizures/chemically induced , Status Epilepticus/chemically induced
10.
J Neurosci Res ; 94(6): 568-78, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26308557

ABSTRACT

Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1(-/y) KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 µM), SGE-872 is selective for tonic, extrasynaptic α4ß3δ-containing GABAA receptors over typical synaptic α1ß2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1(-/y) KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks.


Subject(s)
Amygdala/drug effects , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/pathology , GABA Modulators/pharmacology , Membrane Potentials/drug effects , gamma-Aminobutyric Acid/metabolism , Amygdala/metabolism , Amygdala/pathology , Animals , Animals, Newborn , CHO Cells , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , GABA Agents/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , In Vitro Techniques , Membrane Potentials/genetics , Mice , Mice, Knockout , Patch-Clamp Techniques , Pregnanolone/analogs & derivatives , Pregnanolone/chemistry , Pregnanolone/pharmacology , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Transfection , gamma-Aminobutyric Acid/pharmacology
11.
J Med Chem ; 58(8): 3500-11, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25799373

ABSTRACT

Neuroactive steroids (NASs) have been shown to impact central nervous system (CNS) function through positive allosteric modulation of the GABA(A) receptor (GABA(A)-R). Herein we report the effects on the activity and pharmacokinetic properties of a series of nor-19 pregnanolone analogues bearing a heterocyclic substituent at C-21. These efforts resulted in the identification of SGE-516, a balanced synaptic/extrasynaptic GABA(A) receptor modulator, and SGE-872, a selective extrasynaptic GABA(A) receptor modulator. Both molecules possess excellent druglike properties, making them advanced leads for oral delivery of GABA(A) receptor modulators.


Subject(s)
Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Pregnanolone/analogs & derivatives , Pregnanolone/pharmacology , Receptors, GABA/metabolism , Allosteric Regulation/drug effects , Animals , Humans , Mice , Neurotransmitter Agents/pharmacokinetics , Pregnanolone/pharmacokinetics , Rats , Structure-Activity Relationship
12.
J Med Chem ; 57(6): 2670-82, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24559051

ABSTRACT

We report the synthesis and structure-activity relationships of a class of tetracyclic butyrophenones that exhibit potent binding affinities to serotonin 5-HT(2A) and dopamine D2 receptors. This work has led to the discovery of 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl)-butan-1-one 4-methylbenzenesulfonate (ITI-007), which is a potent 5-HT(2A) antagonist, postsynaptic D2 antagonist, and inhibitor of serotonin transporter. This multifunctional drug candidate is orally bioavailable and exhibits good antipsychotic efficacy in vivo. Currently, this investigational new drug is under clinical development for the treatment of neuropsychiatric and neurological disorders.


Subject(s)
Mental Disorders/drug therapy , Nervous System Diseases/drug therapy , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Adrenergic Uptake Inhibitors/chemical synthesis , Adrenergic Uptake Inhibitors/pharmacology , Animals , Behavior, Animal/drug effects , Biological Availability , Drug Discovery , Electroshock , Indicators and Reagents , Male , Quinoxalines/pharmacokinetics , Quipazine/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism , Recombinant Proteins/drug effects , Schizophrenia/drug therapy , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/pharmacology , Serotonin Plasma Membrane Transport Proteins/drug effects , Structure-Activity Relationship
13.
J Neurosci ; 33(44): 17290-300, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24174662

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABAA receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 µM. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development.


Subject(s)
Cholesterol/metabolism , Hippocampus/metabolism , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Receptors, N-Methyl-D-Aspartate/physiology , Action Potentials/drug effects , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Female , Male , Mice , Norsteroids/metabolism , Norsteroids/pharmacology , Organ Culture Techniques , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
14.
Bioorg Med Chem Lett ; 23(14): 4037-43, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23770058

ABSTRACT

A new series of potent fused thiazole mGlu5 receptor positive allosteric modulators (PAMs) (10, 11 and 27-31) are disclosed and details of the SAR and optimization are described. Optimization of alkynyl thiazole 9 (Lu AF11205) led to the identification of potent fused thiazole analogs 10b, 27a, 28j and 31d. In general, substituted cycloalkyl, aryl and heteroaryl carboxamides, and carbamate analogs are mGlu5PAMs, whereas smaller alkyl carboxamide, sulfonamide and sulfamide analogs tend to be mGlu5 negative allosteric modulators (NAMs).


Subject(s)
Alkynes/chemistry , Receptor, Metabotropic Glutamate 5/chemistry , Thiazoles/chemistry , Allosteric Regulation , Amides/chemical synthesis , Amides/chemistry , Amides/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/metabolism , Humans , Protein Binding , Receptor, Metabotropic Glutamate 5/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/metabolism
15.
Bioorg Med Chem Lett ; 22(20): 6469-74, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22975301

ABSTRACT

A novel series of aryl azetidinyl oxadiazoles are identified as mGluR5 positive allosteric modulators (PAMs) with improved physico-chemical properties. N-substituted cyclohexyl and exo-norbornyl carboxamides, and carbamate analogs of azetidines are moderate to potent mGluR5 PAMs. The aryl, lower alkyl carboxamides analogs and sulfonamide analogs of azetidines are moderate mGluR5 negative allosteric modulators (NAMs). In the aryl oxadiazole moiety, substituents such as fluoro, chloro and methyl are well tolerated at the meta position while para substituents led to either inactive compounds or NAMs. A tight pharmacophore and subtle 'PAM to NAM switching' with close analogs makes the optimization of the series extremely challenging.


Subject(s)
Allosteric Regulation/drug effects , Azetidines/chemistry , Azetidines/pharmacology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Animals , Azetidines/metabolism , Azetidines/pharmacokinetics , Humans , Oxadiazoles/metabolism , Oxadiazoles/pharmacokinetics , Rats , Receptor, Metabotropic Glutamate 5 , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 22(17): 5658-62, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22832311

ABSTRACT

A novel series of N-aryl pyrrolidinonyl oxadiazoles were identified as mGluR5 positive allosteric modulators (PAMs). Optimization of the initial lead compound 6a led to the identification of the 12c (-) enantiomer as a potent compound with acceptable in vitro clearance, CYP, hERG and PK properties. Para substituted N-aryl pyrrolidinonyl oxadiazoles are mGluR5 PAMs while the meta and ortho substituted N-aryl pyrrolidinonyl oxadiazoles are negative allosteric modulators (NAMs). Para fluoro substitution on the N-aryl group and meta chloro or methyl substituents on the aryl oxadiazole moiety are optimal for mGluR5 PAM efficacy. The existence of an exquisitely sensitive 'PAM to NAM switch' within this chemotype making it challenging for simultaneous optimization of potency and drug-like properties.


Subject(s)
Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation , Animals , Cell Line , Humans , Oxadiazoles/pharmacokinetics , Pyrrolidines/pharmacokinetics , Rats , Receptor, Metabotropic Glutamate 5 , Structure-Activity Relationship
17.
J Med Chem ; 55(5): 2452-68, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22313242

ABSTRACT

On the basis of the previously reported benzimidazole 1,3'-bipyrrolidine benzamides (1), a new class of 2-(pyrrolidin-1-yl)ethyl-3,4-dihydroisoquinolin-1(2H)-one derivatives (3-50) were synthesized and evaluated as potent H(3) receptor antagonists. In particular, compound 39 exhibited potent in vitro binding and functional activities at the H(3) receptor, good selectivities against other neurotransmitter receptors and ion channels, acceptable pharmacokinetic properties, and a favorable in vivo profile.


Subject(s)
Benzamides/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Isoquinolines/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Histamine H3/metabolism , Animals , Benzamides/pharmacokinetics , Benzamides/pharmacology , Blood Proteins/metabolism , Cell Line , Cytochrome P-450 Enzyme Inhibitors , Dogs , Drinking Behavior/drug effects , Drug Inverse Agonism , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Guinea Pigs , Histamine Agonists/chemical synthesis , Histamine Agonists/pharmacokinetics , Histamine Agonists/pharmacology , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Humans , In Vitro Techniques , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Macaca fascicularis , Male , Microsomes, Liver/metabolism , Permeability , Protein Binding , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Radioligand Assay , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Stereoisomerism , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 21(19): 5957-60, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21843941
19.
J Med Chem ; 54(14): 5070-81, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21688779

ABSTRACT

There is an increasing amount of evidence to support that activation of the metabotropic glutamate receptor 4 (mGlu4 receptor), either with an orthosteric agonist or a positive allosteric modulator (PAM), provides impactful interventions in diseases such as Parkinson's disease, anxiety, and pain. mGlu4 PAMs may have several advantages over mGlu4 agonists for a number of reasons. As part of our efforts in identifying therapeutics for central nervous system (CNS) diseases such as Parkinson's disease, we have been focusing on metabotropic glutamate receptors. Herein we report our studies with a series of tricyclic thiazolopyrazoles as mGlu4 PAMs.


Subject(s)
Central Nervous System Agents/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Aza Compounds/pharmacology , Azulenes/chemical synthesis , Azulenes/chemistry , Azulenes/pharmacology , Brain/metabolism , Cell Line , Central Nervous System Agents/chemistry , Central Nervous System Agents/pharmacology , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , In Vitro Techniques , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Mice , Microsomes, Liver/metabolism , Models, Molecular , Permeability , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
20.
ACS Chem Neurosci ; 2(8): 433-49, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-22860170

ABSTRACT

This Review describes recent activity in the advancement of ligands for the metabotropic glutamate 4 receptor subtype and their potential utility as central nervous system (CNS) therapeutics. Until recently, there was a paucity of compounds with suitable selectivity and druglike properties to elucidate the value of this target. The search for selective entities has led several groups to the investigation of allosteric modulators as a path to optimization of potential ligands. Recent efforts, discussed here, have afforded a variety of derivatives with improvements in potency, solubility, and pharmacokinetic properties that garner support for continued investigation and optimization.


Subject(s)
Central Nervous System Agents/metabolism , Central Nervous System Agents/therapeutic use , Drug Discovery/trends , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Central Nervous System Agents/chemistry , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Glutamic Acid/therapeutic use , Humans , Ligands , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...