Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 18393, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117743

ABSTRACT

A new series of substituted benzo[h]chromene, benzochromenopyrimidine, and benzochromenotriazolopyrimidine derivatives were synthesized via chemical transformations of iminonitrile, ethoxymethylene amino, and cyanomethylene functionalities. The chemical structures of the synthesized compounds were assured by spectroscopic data and elemental analysis. The larvicidal efficacy of these compounds against Culex pipiens L. larvae was investigated, revealing potent insecticidal activity, particularly for compounds 6, 10, and 16, exceeding that of the standard insecticide chlorpyrifos. The mode of action of these compounds was explored through molecular docking studies, indicating their potential as acetylcholine esterase (AChE) inhibitors and nicotinic acetylcholine receptors (nAChR) blockers. The structure-activity relationship analysis highlighted the influence of substituents and fused heterocyclic rings on larvicidal potency. These findings suggest that the synthesized compounds hold promise as potential candidates for developing novel and effective mosquito control agents.


Subject(s)
Benzopyrans , Culex , Insecticides , Larva , Molecular Docking Simulation , Animals , Culex/drug effects , Larva/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/chemical synthesis , Structure-Activity Relationship , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Models, Molecular , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Receptors, Nicotinic/metabolism , Molecular Structure
2.
Eur J Med Chem ; 249: 115148, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36709649

ABSTRACT

A series of novel benzo[h]chromene compounds were designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their ability to potentiate the effect of antibiotics. Compounds with antibiotic-potentiating effects were then evaluated for inhibition of Nile Red efflux, and for off-target effects including activity on the outer and inner bacterial membranes and toxicity. Six compounds were identified to reduce the MIC values of at least one of the tested antibiotics by at least 4-fold, and further reduced the MICs in the presence of a membrane permeabilizer. The identified compounds were also able to inhibit Nile Red efflux at concentrations between 50 µM and 200 µM. The compounds did not disrupt the bacterial outer membrane nor display toxicity in a nematode model (Caenorhabditis elegans). The 4-methoxyphenoxy)propoxy derivative compound G6 possessed the most potent antibacterial potentiation with erythromycin by 8-fold even without the presence of a membrane permeabilizer. Furthermore, H6, G6, G10 and G11 completely abolished the Nile Red efflux at a concentration of 50 µM. The 3,4-dihydro-2H-benzo[h]chromen-5-yl)(morpholino)methanone core appears to be a promising chemical skeleton to be further studied in the discovery of more putative AcrB inhibitors.


Subject(s)
Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Erythromycin/pharmacology , Drug Resistance, Multiple , Multidrug Resistance-Associated Proteins , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
3.
Appl Biochem Biotechnol ; 194(11): 5386-5402, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35779177

ABSTRACT

Seeking for new effectual anticancer drugs is of great importance. In this study, a newly synthesized and well-characterized chromene derivative (ethyl 2-amino-4-phenyl-4H-benzo(h)chromene-3-carboxylate) "C" was prepared. Molecular docking studies were done. The new compound "C" in compare to the natural parent Quercetin "Q," as a well-known natural chromene derivative with antioxidant and antitumor activities, were tested for their antitumor activity against Ehrlich ascites carcinoma (EAC)-bearing mice. Both reduced ascites volume, decreased viable EAC cells, and prolonged EAC-bearing mice life span. They normalized troponin, creatine kinase-MB, lactate dehydrogenase, and urea levels, reversed liver enzyme activities towards normal, and increased antioxidant levels while reduced tumor necrosis factor-alpha (TNF-α) levels. Compared to each other, the new synthetic derivative "C" showed stronger antineoplastic effects than the natural parent "Q" may via the anti-inflammatory activities. Therefore, the newly synthesized chromene derivative is more promising as a future antitumor candidate than the natural parent molecule "Quercetin." Finally, our results encourage researchers to pay more attention to developing more novel natural-based derivatives that would be more beneficial as future therapeutics than their natural parents.


Subject(s)
Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Mice , Animals , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Ascites , Quercetin/therapeutic use , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzopyrans/therapeutic use , Troponin/therapeutic use , Lactate Dehydrogenases , Creatine Kinase/therapeutic use , Urea
4.
Mol Divers ; 25(4): 2339-2349, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32683615

ABSTRACT

A series of ethyl 2-amino-4H-benzo[h]chromene-3-carboxylate derivatives, having phenyl ring with diverse substituents at C4 position of 4H-benzochromene nucleus, were synthesized via one-pot three-component reaction between various aromatic aldehydes, α-naphthol, and ethyl cyanoacetate. The synthesized compounds were screened for their antityrosinase activity. Compound 4i, bearing 4-dimethylamino substitution on C4-phenyl ring, was the most potent tyrosinase inhibitor (IC50 = 34.12 µM). The inhibition kinetic analysis of 4i indicated that the compound was a competitive tyrosinase inhibitor. Compounds 4a, 4g, 4i and 4j were the effective radical scavengers with EC50s in the range of 0.144-0.943 mM. According to the in silico drug-like and ADME predictions, 4i can be considered as a suitable candidate. Molecular docking results confirmed that the derivative was well accommodated within the mushroom tyrosinase binding site. Therefore, 4i can be introduced as a novel tyrosinase inhibitor that might be a promising lead in medicine, cosmetics, and food industry.


Subject(s)
Monophenol Monooxygenase
5.
Anticancer Agents Med Chem ; 21(8): 963-986, 2021.
Article in English | MEDLINE | ID: mdl-32981512

ABSTRACT

BACKGROUND: Benzo[h]chromenes attracted great attention because of their widespread biological activities, including anti-proliferate activity, and the discovery of novel effective anti-cancer agents is imperative. OBJECTIVE: The main objective was to synthesize new benzo[h]chromene derivatives and some reported derivatives, and then test all of them for their anti-cancer activities. METHODS: The structures of the newly synthesized derivatives were confirmed by elemental and spectral analysis (IR, Mass, 1H-NMR and 13C-NMR). 35 compounds were selected by the National Cancer Institute (NCI) for single-dose testing against 60 cell lines and 3 active compounds were selected for 5-doses testing. Also, these 3 compounds were tested as EGFR-inhibitors; using sorafenib as standard, and as Tubulin polymerization inhibitors using colchicines as a standard drug. Moreover, molecular docking study for the most active derivative on these 2 enzymes was also carried out. RESULTS: Compounds 1a, 1c and 2b have the highest activities among all 35 tested compounds especially compound 1c. CONCLUSION: compound 1c has promising anti-cancer activities compared to the used standards and may need further modification and investigations.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzopyrans/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Tubulin Modulators/chemical synthesis , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colchicine/analogs & derivatives , Colchicine/pharmacology , Colchicine/standards , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Sorafenib/pharmacology , Sorafenib/standards , Structure-Activity Relationship , Tubulin Modulators/pharmacology
6.
Eur J Med Chem ; 213: 113049, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33279291

ABSTRACT

Drug efflux pumps have emerged as a new drug targets for the treatment of bacterial infections in view of its critical role in promoting multidrug resistance. Herein, novel chromanone and 2H-benzo[h]chromene derivatives were designed by means of integrated molecular design and structure-based pharmacophore modeling in an attempt to identify improved efflux pump inhibitors that target Escherichia coli AcrB. The compounds were tested for their efflux inhibitory activity, ability to inhibit efflux, and the effect on bacterial outer and inner membranes. Twenty-three novel structures were identified that synergized with antibacterials tested, inhibited Nile Red efflux, and acted specifically on the AcrB. Among them, WK2, WL7 and WL10 exhibiting broad-spectrum and high-efficiency efflux inhibitory activity were identified as potential ideal AcrB inhibitors. Molecular modeling further revealed that the strong π-π stacking interactions and hydrogen bond networks were the major contributors to tight binding of AcrB.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzopyrans/chemical synthesis , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Benzopyrans/pharmacology , Cell Membrane Permeability , Drug Design , Drug Resistance, Multiple, Bacterial , Hydrogen Bonding , Microbial Sensitivity Tests , Models, Molecular , Protein Binding , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 24(11): 2404-7, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24792464

ABSTRACT

A novel class of NF-κB inhibitors were designed and synthesized based on KL-1156 (6-hydroxy-7-methoxychroman-2-carboxylic acid phenyl amide) which is unambiguously considered to be a promising inhibitor for the translocation step of NF-κB. Especially in this study we focused on the modifying the chroman moiety of KL-1156 into four parts for exploring the SAR studies linked with physical properties of substituents resulted the development of novel 1a-k, 2a-f, 3a-d and 4a-d derivatives of 3,4-dihydro-2H-benzo[h]chromene. From the SAR studies we were very delightfully identified that several new N-aryl-3,4-dihydro-2H-benzo[h]chromene-2-carboxamide derivatives (1a-k) exhibited good inhibitory activity and anti-proliferative activity than parent lead compound KL-1156, among them 1i exhibited outstanding inhibitory effect on LPS-induced NF-κB transcriptional activity and anti-proliferative activity on NCI-H23 lung cancer cell lines than KL-1156.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Drug Design , NF-kappa B/antagonists & inhibitors , Anilides/chemical synthesis , Anilides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
8.
Toxicol In Vitro ; 27(7): 2094-104, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23933437

ABSTRACT

Novel ß-lapachone analogs 2-phenyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione (NQ1), 2-p-tolyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione (NQ3) and 2-methyl-2-phenyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione (NQ7), which have trypanocidal activity, were assayed for cytotoxic effects on murine EL-4 T lymphoma cells. The NQs inhibited the proliferation of EL-4 cells at concentrations above 1µM. Nuclear staining of the EL-4 cells revealed chromatin condensation and a nuclear morphology compatible with the induction of apoptosis. Flow cytometry assays with annexin V-FITC and propidium iodide confirmed the cell death by apoptosis. Using electron paramagnetic resonance (EPR), a semiquinone radical was detected in EL-4 cells treated with NQs. In addition, a decrease in the GSH level in parallel with reactive oxygen species (ROS) production was observed. Preincubation with n-acetyl-l-cysteine (NAC) was able to reverse the inhibitory effects of the NQs on cell proliferation, indicating that ROS generation is involved in NQ-induced apoptosis. In addition, the NQs induced a decrease in the mitochondrial membrane potential and increased the proteolytic activation of caspases 9 and 3 and the cleavage of Poly (ADP-Ribose) Polymerase (PARP). In conclusion, these results indicate that redox cycling is induced by the NQs in the EL-4 cell line, with the generation of ROS and other free radicals that could inhibit cellular proliferation as a result of the induction of the intrinsic apoptosis pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Lymphoma, T-Cell/drug therapy , Naphthoquinones/pharmacology , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects , Acetylcysteine/pharmacology , Animals , Antineoplastic Agents/antagonists & inhibitors , Benzopyrans/antagonists & inhibitors , Benzopyrans/pharmacology , Benzoquinones/metabolism , Cell Line, Tumor , Cell Nucleus Shape/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromatin Assembly and Disassembly/drug effects , Free Radical Scavengers/pharmacology , Glutathione/antagonists & inhibitors , Glutathione/metabolism , Kinetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Naphthoquinones/antagonists & inhibitors , Reactive Oxygen Species/antagonists & inhibitors , Trypanocidal Agents/antagonists & inhibitors , Trypanocidal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL