Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 18504, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122913

ABSTRACT

Nonholonomic constrained wheeled mobile robot (WMR) trajectory tracking requires the enhancement of the ground adaptation capability of the WMR while ensuring its attitude tracking accuracy, a novel dual closed-loop control structure is developed to implement this motion/force coordinated control objective in this paper. Firstly, the outer-loop motion controller is presented using Laguerre functions modified model predictive control (LMPC). Optimised solution condition is introduced to reduce the number of LMPC solutions. Secondly, an inner-loop force controller based on adaptive integral sliding mode control (AISMC) is constructed to ensure the desired velocity tracking and output driving torques by combining second-order nonlinear extended state observer (ESO) with the estimation of dynamic uncertainties and external disturbances during WMR travelling process. Then, Lyapunov stability theory is utilised to guarantee the consistent final boundedness of the designed controller. Finally, the system is numerically simulated and practically verified. The results show that the double-closed-loop control strategy devised in this paper has better control performance in terms of complex trajectory tracking accuracy, system resistance to strong interference and computational timeliness, and is able to realise effective coordinated control of WMR motion/force.

2.
Sensors (Basel) ; 24(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38894407

ABSTRACT

This paper presents a novel robust output feedback control that simultaneously performs both stabilization and trajectory tracking for a class of underactuated nonholonomic systems despite model uncertainties, external disturbance, and the absence of velocity measurement. To solve this challenging problem, a generalized normal form has been successfully created by employing an input-output feedback linearization approach and a change in coordinates (diffeomorphism). This research mainly focuses on the stabilization problem of nonholonomic systems that can be transformed to a normal form and pose several challenges, including (i) a nontriangular normal form, (ii) the internal dynamics of the system are non-affine in control, and (iii) the zero dynamics of the system are not in minimum phase. The proposed scheme utilizes combined backstepping and sliding mode control (SMC) techniques. Furthermore, the full-order high gain observer (HGO) has been developed to estimate the derivative of output functions and internal dynamics. Then, full-order HGO and the backstepping SMC have been integrated to synthesize a robust output feedback controller. A differential-drive type (2,0) the wheeled mobile robot has been considered as an example to support the theoretical results. The simulation results demonstrate that the backstepping SMC exhibits robustness against bounded uncertainties.

3.
ISA Trans ; 151: 51-61, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945763

ABSTRACT

This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally, comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed method.

4.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732955

ABSTRACT

This paper proposes a robust tracking control method for wheeled mobile robot (WMR) against uncertainties, including wind disturbances and slipping. Through the application of the differential flatness methodology, the under-actuated WMR model is transformed into a linear canonical form, simplifying the design of a stabilizing feedback controller. To handle uncertainties from wheel slip and wind disturbances, the proposed feedback controller uses sliding mode control (SMC). However, increased uncertainties lead to chattering in the SMC approach due to higher control inputs. To mitigate this, a boundary layer around the switching surface is introduced, implementing a continuous control law to reduce chattering. Although increasing the boundary layer thickness reduces chattering, it may compromise the robustness achieved by SMC. To address this challenge, an active disturbance rejection control (ADRC) is integrated with boundary layer sliding mode control. ADRC estimates lumped uncertainties via an extended state observer and eliminates them within the feedback loop. This combined feedback control method aims to achieve practical control and robust tracking performance. Stability properties of the closed-loop system are established using the Lyapunov theory. Finally, simulations and experimental results are conducted to compare and evaluate the efficiency of the proposed robust tracking controller against other existing control methods.

5.
ISA Trans ; 148: 64-77, 2024 May.
Article in English | MEDLINE | ID: mdl-38580577

ABSTRACT

Wheeled Mobile Robots (WMRs) are systems with applications in diverse fields such as transportation, civilian services, military use, and space exploration. Then, their use will continue increasing, making WMRs an essential research topic that deserves further study. To this end, this work presents a novel observer-based finite-time controller for trajectory tracking control of WMRs disturbed by kinematic disturbances. In the proposed approach, the kinematic model of the WMR is transformed into a set of two decoupled second-order systems. Then, the proposed controller is divided into two parts. The first one employs an observer to estimate the effect of the kinematic disturbances. The second part consists of a finite-time controller designed to achieve finite-time convergence of the tracking error. A detailed synthesis procedure theoretically demonstrates the feasibility of the proposed controller. Subsequently, the proposed scheme is compared against finite-time, feedback, and H∞ controllers. Exhaustive numerical simulations show that the proposed new control methodology achieves the trajectory tracking objective despite kinematic disturbances and outperforms the other control procedures. Finally, some comments and numerical results are given to clarify how the proposed control methodology can be used to design new controllers for trajectory tracking in WMRs and demonstrate that the new proposal remains to have a good performance when the system's coordinates are corrupted by measurement noise.

6.
Math Biosci Eng ; 21(3): 3774-3783, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38549306

ABSTRACT

This paper was concerned with the trajectory tracking control of wheeled mobile robots using aperiodic intermittent control. By establishing the corresponding motion model of the wheeled mobile robot, a tracking control strategy was proposed based on the intermittent control approach and backstepping method. Compared to the controllers using continuous state feedback, the proposed control strategy was activated only on separate time intervals, which combined the features of closed- and open-loop control. An example was given to illustrate the effectiveness of the obtained result.

7.
ISA Trans ; 147: 577-589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395718

ABSTRACT

The widespread use of wheeled mobile robots (WMRs) in many fields has created new challenges. A critical issue is wheel slip, which, if not accurately determined and controlled, causes instability and deviation from the robot's path. In this paper, an intelligent approach for estimating the longitudinal and lateral slip of wheels is proposed that can effectively compensate for the negative effects of slippage. The proposed algorithm relies on three regression networks to estimate the longitudinal slip ratio of the right and left wheels and sideslip angle on terrains with different friction coefficients. The datasets collected during tests on different surfaces with various maneuvers are used to train the artificial neural networks (ANNs). A developed dynamic model of a WMR considering wheel slip and modified traction force is presented. The adaptive robust controller, based on sliding mode control (SMC), is introduced to deal with the problems related to slipping, unknown uncertainties, and disturbances. The simulation results demonstrate that the presented controller has better performance than SMC in handling external disturbances and uncertainties, which leads to reduction in tracking error and faster convergence to zero. The proposed controller with an intelligent slip estimator, has been applied to a four-wheel mobile robot to demonstrate its effectiveness and feasibility. The high accuracy of slip estimation in the mentioned intelligent algorithm has resulted in the presented method being on average 26% more effective in reducing the tracking error than the control method without slip compensation in each test for circular trajectory.

8.
ISA Trans ; 142: 372-385, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37550120

ABSTRACT

Wheeled Mobile Robots (WMRs) are systems with multiple industrial and civilian applications. Trajectory tracking is essential in many applications, such as surveillance, monitoring, and autonomous driving. However, in practical applications, a WMR is always affected by kinematic disturbances, state estimation error, and measurement noise, which may diminish the system's performance. Hence, this work proposes a novel observer-based H∞ controller that is robust against matched and unmatched disturbances. The proposed methodology compensates for disturbances through a disturbance observer, transforming the closed-loop system into a new one affected by uniformly bounded disturbances. Then, an H∞ controller is designed to make the WMR track a desired reference signal. A formal stability proof demonstrates the feasibility of the new proposal. Also, feedback and finite-time controllers are used to assess the novel controller. Numerical simulations and experimental results with a scaled autonomous car-like robot demonstrate the novel controller's efficiency and outstanding performance, despite disturbances when compared against finite-time and feedback controllers.

9.
ISA Trans ; 141: 365-376, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37455187

ABSTRACT

This paper focuses on the tracking control problem for the two-wheeled mobile robot (TWMR) with unknown parameters. The robot collects its own states from the networked positioning system, which is subject to Denial-of-Service (DoS) attacks. To handle the uncertainties in the robot model and mitigate the attack effects on the system performance, parameter estimators with the projection operator technique are introduced. Then, an adaptive tracking controller is designed by adopting the backstepping technique. Correspondingly, a stability condition is derived, which guarantees that all the closed-loop signals are semi-globally uniformly bounded and tracking errors can converge to an adjustable compact set. The stability condition also reveals the relationships among the attack durations, design parameters and tracking errors, which can be utilized to guide the choice of design parameters. Experimental results are provided to validate the effectiveness of the proposed control scheme.

10.
ISA Trans ; 136: 525-534, 2023 May.
Article in English | MEDLINE | ID: mdl-36376107

ABSTRACT

In this study, a double-loop tracking control strategy is investigated to realize trajectory tracking control for a wheeled mobile robot (WMR) with unmodeled dynamics. More specifically, two nonlinear ESOs are designed to estimate disturbances from external disturbances and unmodeled dynamics. Combining with integral sliding mode control and backstepping control, a double-loop tracking controller is designed to enhance tracking accuracy for the WMR along the right angle roads. Based on Lyapunov methods, convergence analysis is given for both the nonlinear ESOs and the double-loop tracking controller. Validity of the double-loop tracking control strategy is demonstrated by experimental results on the WMR along a right angle road.

11.
Sensors (Basel) ; 22(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365875

ABSTRACT

This paper aims to develop a new mobile robot path planning algorithm, called generalized laser simulator (GLS), for navigating autonomously mobile robots in the presence of static and dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path while finding the target and avoiding obstacles while moving in complex regions. An optimal path between the start and target point is found by forming a wave of points in all directions towards the target position considering target minimum and border maximum distance principles. The algorithm will select the minimum path from the candidate points to target while avoiding obstacles. The obstacle borders are regarded as the environment's borders for static obstacle avoidance. However, once dynamic obstacles appear in front of the GLS waves, the system detects them as new dynamic obstacle borders. Several experiments were carried out to validate the effectiveness and practicality of the GLS algorithm, including path-planning experiments in the presence of obstacles in a complex dynamic environment. The findings indicate that the robot could successfully find the correct path while avoiding obstacles. The proposed method is compared to other popular methods in terms of speed and path length in both real and simulated environments. According to the results, the GLS algorithm outperformed the original laser simulator (LS) method in path and success rate. With application of the all-direction border scan, it outperforms the A-star (A*) and PRM algorithms and provides safer and shorter paths. Furthermore, the path planning approach was validated for local planning in simulation and real-world tests, in which the proposed method produced the best path compared to the original LS algorithm.

12.
ISA Trans ; 130: 553-564, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35489816

ABSTRACT

This work investigates the problem of fast tracking control for a class of high-order nonlinear systems subject to the matched disturbances. More particularly, a novel practical fixed-time disturbance observer is first presented by using a smooth hyperbolic tangent function. Then, a new nonsingular recursive-structure sliding mode surface is proposed based on the terminal sliding mode surface. With the reconstructed information deriving from the designed disturbance observer, a nonsingular recursive-structure sliding mode based finite-time tracking control approach incorporating with a new adaptive law is proposed to ensure the tracking errors converge to a small region of the origin in finite time. The finite-time stability of the closed-loop tracking control system driven by the proposed control scheme is analyzed and proved utilizing Lyapunov theory. And also, the proposed generalized control approach is applied to a mobile robotic experimental platform to achieve accurate trajectory tracking on the uneven ground. Finally, the numerical simulation and comparative experiment results demonstrate the effectiveness and superiority of the proposed approach.

13.
Entropy (Basel) ; 25(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36673168

ABSTRACT

Nonholonomic four-wheeled mobile robot (NFMR) is a typical multiple input-multiple output system that formulates its kinematic dynamics concerning position and attitude in a parallel manner. However, due to the lumped disturbances and interconnected states, demand-satisfied performance is difficult to obtain for existing coupled control solutions. To address this problem, a double-loop sliding-mode control (DLSMC) mechanism is proposed for achieving position/attitude cascade regulation. For the outer position tracking loop in the proposed scheme, a sliding mode control method of the bounded time-varying integral nonsingular terminal is designed to guarantee fast tracking in the presence of large initial errors and input saturation. On the other hand, for the inner attitude control loop, a novel adaptive barrier function-based sliding-mode control method is proposed without control gain overestimation. This enables the attitude to follow within a predefined vicinity of the sliding mode surface and holds it subsequently independent of the lumped uncertainties. Theoretical analysis is conducted to demonstrate the asymptotic stability. Comparative experiments implemented on a homemade NFMR show enhanced trajectory tracking performance and system robustness using position/attitude cascade regulation via the proposed DLSMC mechanism.

14.
ISA Trans ; 128(Pt A): 123-132, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34756757

ABSTRACT

To handle the tracking control problem of the magnetic wheeled mobile robot (MWMR), this paper developed an online robust tracking control scheme by adaptive dynamic programming (ADP). The problem, that how to achieve optimal tracking control of continuous-time (CT) MWMR system with the time-varying unknown uncertainty, can be solved indirectly through matching the optimal tracking control of the associated nominal system . A single critic NN-based actor-critic structure is tailored for simpler controller architecture. By minimizing the Bellman error with gradient descending and least-squares updating laws, the critic NN weights can be optimized online. Thus the optimal cost function and the optimal control signal can be approximated with high precision. Using the Lyapunov stability theorem, the convergence of the critic NN weights, and the stability of the closed-loop system is provided. Simulations, in comparison with robust PD control and adaptive control, are presented to illustrate the effectiveness of the proposed tracking control method for the MWMR.

15.
Sensors (Basel) ; 21(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419009

ABSTRACT

With the rapid development of robotics, wheeled mobile robots are widely used in smart factories to perform navigation tasks. In this paper, an optimal trajectory planning method based on an improved dolphin swarm algorithm is proposed to balance localization uncertainty and energy efficiency, such that a minimum total cost trajectory is obtained for wheeled mobile robots. Since environmental information has different effects on the robot localization process at different positions, a novel localizability measure method based on the likelihood function is presented to explicitly quantify the localization ability of the robot over a prior map. To generate the robot trajectory, we incorporate localizability and energy efficiency criteria into the parameterized trajectory as the cost function. In terms of trajectory optimization issues, an improved dolphin swarm algorithm is then proposed to generate better localization performance and more energy efficiency trajectories. It utilizes the proposed adaptive step strategy and learning strategy to minimize the cost function during the robot motions. Simulations are carried out in various autonomous navigation scenarios to validate the efficiency of the proposed trajectory planning method. Experiments are performed on the prototype "Forbot" four-wheel independently driven-steered mobile robot; the results demonstrate that the proposed method effectively improves energy efficiency while reducing localization errors along the generated trajectory.

16.
Sensors (Basel) ; 20(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317173

ABSTRACT

In this paper, a detail design procedure of the real-time trajectory tracking for the nonholonomic wheeled mobile robot (NWMR) is proposed. A 9-axis micro electro-mechanical systems (MEMS) inertial measurement unit (IMU) sensor is used to measure the posture of the NWMR, the position information of NWMR and the hand-held device are acquired by global positioning system (GPS) and then transmit via radio frequency (RF) module. In addition, in order to avoid the gimbal lock produced by the posture computation from Euler angles, the quaternion is utilized to compute the posture of the NWMR. Furthermore, the Kalman filter is used to filter out the readout noise of the GPS and calculate the position of NWMR and then track the object. The simulation results show the posture error between the NWMR and the hand-held device can converge to zero after 3.928 seconds for the dynamic tracking. Lastly, the experimental results show the validation and feasibility of the proposed results.

17.
Sensors (Basel) ; 20(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630046

ABSTRACT

Motion control involving DC motors requires a closed-loop system with a suitable compensator if tracking performance with high precision is desired. In the case where structural model errors of the motors are more dominating than the effects from noise disturbances, accurate system modelling will be a considerable aid in synthesizing the compensator. The focus of this paper is on enhancing the tracking performance of a wheeled mobile robot (WMR), which is driven by two DC motors that are subject to model parametric uncertainties and uncertain deadzones. For the system at hand, the uncertain nonlinear perturbations are greatly induced by the time-varying power supply, followed by behaviour of motion and speed. In this work, the system is firstly modelled, where correlations between the model parameters and different input datasets as well as voltage supply are obtained via polynomial regressions. A robust H ∞ -fuzzy logic approach is then proposed to treat the issues due to the aforementioned perturbations. Via the proposed strategy, the H ∞ controller and the fuzzy logic (FL) compensator work in tandem to ensure the control law is robust against the model uncertainties. The proposed technique was validated via several real-time experiments, which showed that the speed and path tracking performance can be considerably enhanced when compared with the results via the H ∞ controller alone, and the H ∞ with the FL compensator, but without the presence of the robust control law.

18.
Sensors (Basel) ; 20(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630340

ABSTRACT

A real-time roundabout detection and navigation system for smart vehicles and cities using laser simulator-fuzzy logic algorithms and sensor fusion in a road environment is presented in this paper. A wheeled mobile robot (WMR) is supposed to navigate autonomously on the road in real-time and reach a predefined goal while discovering and detecting the road roundabout. A complete modeling and path planning of the road's roundabout intersection was derived to enable the WMR to navigate autonomously in indoor and outdoor terrains. A new algorithm, called Laser Simulator, has been introduced to detect various entities in a road roundabout setting, which is later integrated with fuzzy logic algorithm for making the right decision about the existence of the roundabout. The sensor fusion process involving the use of a Wi-Fi camera, laser range finder, and odometry was implemented to generate the robot's path planning and localization within the road environment. The local maps were built using the extracted data from the camera and laser range finder to estimate the road parameters such as road width, side curbs, and roundabout center, all in two-dimensional space. The path generation algorithm was fully derived within the local maps and tested with a WMR platform in real-time.

19.
ISA Trans ; 100: 454-468, 2020 May.
Article in English | MEDLINE | ID: mdl-31916988

ABSTRACT

In this paper, we present neuro-fuzzy cognitive map (NFCM) to control a non-holonomic wheeled mobile robot, for both the kinematic control and the dynamic control. For this purpose, the rules for updating the parameters of NFCM used in online training have been extracted. Also, the convergence of the presented approach has been confirmed by means of Lyapunov method. To evaluate the strength and robustness of the proposed model, it has been tested in tracking different circular and square paths. Experimental results indicate that despite the presence of disturbances, the changes of system parameters, and the existence of non-holonomic constraints, our robot has been able to follow challenging paths (e.g. square-shape trajectories) successfully.

20.
Sensors (Basel) ; 19(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669633

ABSTRACT

In this paper, we present an estimation-based route planning (ERP) method for chemical source searching using a wheeled mobile robot and validate its effectiveness with outdoor field experiments. The ERP method plans a dynamic route for the robot to follow to search for a chemical source according to time-varying wind and an estimated chemical-patch path (C-PP), where C-PP is the historical trajectory of a chemical patch detected by the robot, and normally different from the chemical plume formed by the spatial distribution of all chemical patches previously released from the source. Owing to the limitations of normal gas sensors and actuation capability of ground mobile robots, it is quite hard for a single robot to directly trace the intermittent and rapidly swinging chemical plume resulting from the frequent and random changes of wind speed and direction in outdoor field environments. In these circumstances, tracking the C-PP originating from the chemical source back could help the robot approach the source. The proposed ERP method was tested in two different outdoor fields using a wheeled mobile robot. Experimental results indicate that the robot adapts to the time-varying airflow condition, arriving at the chemical source with an average success rate and approaching effectiveness of about 90% and 0.4~0.6, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL