Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Comput Biol Med ; 179: 108898, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047503

ABSTRACT

Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target. In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes. Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.


Subject(s)
Cannabidiol , Epilepsy , Glutamic Acid , Molecular Docking Simulation , Signal Transduction , Cannabidiol/pharmacology , Cannabidiol/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Epilepsy/genetics , Humans , Signal Transduction/drug effects , Glutamic Acid/metabolism , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology
2.
Epilepsy Res ; 205: 107419, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029440

ABSTRACT

The aim of the present study was to develop a novel formulation of berberine (BBR) and demonstrate its anti-seizure effect in pentylenetetrazole (PTZ) induced kindling model in rats. Nanoparticles of BBR were formulated using Poly Lactic-co-Glycolic Acid (PLGA) as a polymer. Emulsification and solvent evaporation technique was used. PTZ induced kindling model in male wistar rat was used to demonstrate the anti-seizure effect of nano-BBR. The particle size obtained for the final formulation was 242.8 ± 67.35 nm with a PDI of 0.140 ± 0.01. PLGA encapsulated BBR nanoparticles showed the % encapsulation efficiency of 87.33 ± 2.42 % and % drug loading of 48.47 ± 1.34 %. In-vitro drug release data showed sustained release of nano-BBR as compared to BBR. Kinetic study data showed increase in AUC of nano-BBR (35,429.46 h.ng/ml) as compared to BBR (28,211.07 h.ng/ml). Cmax for nano- BBR (2251.90 ng/ml) is approximately 1.6 times greater than BBR (1505.50 ng/ml). Nano- BBR has shown the significant effect on the seizure score. The PLGA encapsulated berberine nanoparticles were prepared by an innovative simple method and offers excellent potential as an antiepileptic agent.


Subject(s)
Anticonvulsants , Berberine , Disease Models, Animal , Epilepsy , Nanoparticles , Pentylenetetrazole , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Wistar , Berberine/pharmacology , Berberine/administration & dosage , Animals , Male , Epilepsy/drug therapy , Anticonvulsants/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Kindling, Neurologic/drug effects , Rats , Particle Size , Lactic Acid , Polyglycolic Acid , Seizures/drug therapy
3.
Drug Dev Res ; 85(5): e22236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032052

ABSTRACT

The novel cinnamic acid (CA) (H4-CA, H5-CA, and H7-CA) and caffeic acid (KA) (H4-KA, H5-KA, and H7-KA) hemorphin analogs have recently been synthesized and their trans isomers have been tested for antiseizure and antinociceptive activity. In the present study, the cis forms of these compounds were tested and compared with their trans isomers in seizure and nociception tests in mice. The cis-H5-CA and H7-CA compounds showed efficacy against psychomotor seizures, whereas the trans isomers were ineffective. Both the cis and trans KA isomers were ineffective in the 6-Hz test. In the maximal electroshock (MES) test, the cis isomers showed superior antiseizure activity to the trans forms of CA and KA conjugates, respectively. The suppression of seizure propagation by cis-H5-CA and the cis-H5-KA was reversed by a kappa opioid receptor (KOR) antagonist. Naloxone and naltrindole were not effective. The cis-isomers of CA conjugates and cis-H7-KA produced significantly stronger antinociceptive effects than their trans-isomers. The cis-H5-CA antinociception was blocked by naloxone in the acute phase and by naloxone and KOR antagonists in the inflammatory phase of the formalin test. The antinociception of the KA conjugates was not abolished by opioid receptor blockade. None of the tested conjugates affected the thermal nociceptive threshold. The results of the docking analysis also suggest a model-specific mechanism related to the activity of the cis-isomers of CA and KA conjugates in relation to opioid receptors. Our findings pave the way for the further development of novel opioid-related antiseizure and antinociceptive therapeutics.


Subject(s)
Analgesics , Anticonvulsants , Caffeic Acids , Cinnamates , Seizures , Animals , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/chemical synthesis , Mice , Male , Seizures/drug therapy , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/chemical synthesis , Cinnamates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/therapeutic use , Caffeic Acids/chemical synthesis , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Peptides/therapeutic use , Molecular Docking Simulation , Isomerism
4.
J Med Chem ; 67(15): 12912-12931, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39037114

ABSTRACT

Dysfunction of voltage-gated sodium channel Nav1.2 causes various epileptic disorders, and inhibition of the channel has emerged as an attractive therapeutic strategy. However, currently available Nav1.2 inhibitors exhibit low potency and limited structural diversity. In this study, a novel series of pyrimidine-based derivatives with Nav1.2 inhibitory activity were designed, synthesized, and evaluated. Compounds 14 and 35 exhibited potent activity against Nav1.2, boasting IC50 values of 120 and 65 nM, respectively. Compound 14 displayed favorable pharmacokinetics (F = 43%) following intraperitoneal injection and excellent brain penetration potency (B/P = 3.6). Compounds 14 and 35 exhibited robust antiepileptic activities in the maximal electroshock test, with ED50 values of 3.2 and 11.1 mg/kg, respectively. Compound 35 also demonstrated potent antiepileptic activity in a 6 Hz (32 mA) model, with an ED50 value of 18.5 mg/kg. Overall, compounds 14 and 35 are promising leads for the development of new small-molecule therapeutics for epilepsy.


Subject(s)
Anticonvulsants , Epilepsy , NAV1.2 Voltage-Gated Sodium Channel , Pyrimidines , Animals , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/chemical synthesis , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacokinetics , Epilepsy/drug therapy , Epilepsy/metabolism , Mice , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Structure-Activity Relationship , Humans , Disease Models, Animal , Male , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/therapeutic use , Drug Discovery , Electroshock , Molecular Docking Simulation
5.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954171

ABSTRACT

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Subject(s)
Administration, Intranasal , Epilepsy , Gels , Nasal Mucosa , Triterpenes , Animals , Administration, Intranasal/methods , Epilepsy/drug therapy , Gels/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Male , Triterpenes/administration & dosage , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Triterpenes/chemistry , Temperature , Saponins/administration & dosage , Saponins/chemistry , Saponins/pharmacology , Saponins/pharmacokinetics , Chemistry, Pharmaceutical/methods , Biological Availability , Rats , Poloxamer/chemistry , Anticonvulsants/administration & dosage , Anticonvulsants/pharmacokinetics , Anticonvulsants/pharmacology , Anticonvulsants/chemistry
6.
Drug Res (Stuttg) ; 74(6): 296-301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968953

ABSTRACT

BACKGROUND: Epilepsy poses a significant global health challenge, particularly in regions with limited financial resources hindering access to treatment. Recent research highlights neuroinflammation, particularly involving cyclooxygenase-2 (COX-2) pathways, as a promising avenue for epilepsy management. METHODS: This study aimed to develop a Cyclooxygenase-2 inhibitor with potential anticonvulsant properties. A promising drug candidate was identified and chemically linked with phospholipids through docking analyses. The activation of this prodrug was assessed using phospholipase A2 (PLA2)-mediated hydrolysis studies. The conjugate's confirmation and cytotoxicity were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), and Sulphoramide B (SRB) assays. RESULTS: Docking studies revealed that the Celecoxib-Phospholipid conjugate exhibited a superior affinity for PLA2 compared to other drug-phospholipid conjugates. FT-IR spectroscopy confirmed the successful synthesis of the conjugate, while DSC analysis confirmed its purity and formation. PLA2-mediated hydrolysis experiments demonstrated selective activation of the prodrug depending on PLA2 concentration. SRB experiments indicated dose-dependent cytotoxic effects of Celecoxib, phospholipid non-toxicity, and efficient celecoxib-phospholipid conjugation. CONCLUSION: This study successfully developed a Celecoxib-phospholipid conjugate with potential anticonvulsant properties. The prodrug's specific activation and cytotoxicity profile makes it a promising therapeutic candidate. Further investigation into underlying mechanisms and in vivo studies is necessary to assess its translational potential fully.


Subject(s)
Anticonvulsants , Celecoxib , Molecular Docking Simulation , Phospholipases A2 , Phospholipids , Prodrugs , Celecoxib/pharmacology , Phospholipids/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Phospholipases A2/metabolism , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Spectroscopy, Fourier Transform Infrared/methods , Animals , Calorimetry, Differential Scanning , Epilepsy/drug therapy , Hydrolysis , Cell Survival/drug effects
7.
Sci Rep ; 14(1): 16562, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39020064

ABSTRACT

Due to considerable global prevalence and high recurrence rate, the pursuit of effective new medication for epilepsy treatment remains an urgent and significant challenge. Drug repurposing emerges as a cost-effective and efficient strategy to combat this disorder. This study leverages the transformer-based deep learning methods coupled with molecular binding affinity calculation to develop a novel in-silico drug repurposing pipeline for epilepsy. The number of candidate inhibitors against 24 target proteins encoded by gain-of-function genes implicated in epileptogenesis ranged from zero to several hundreds. Our pipeline has repurposed the medications with most anti-epileptic drugs and nearly half psychiatric medications, highlighting the effectiveness of our pipeline. Furthermore, Lomitapide, a cholesterol-lowering drug, first emerged as particularly noteworthy, exhibiting high binding affinity for 10 targets and verified by molecular dynamics simulation and mechanism analysis. These findings provided a novel perspective on therapeutic strategies for other central nervous system disease.


Subject(s)
Anticonvulsants , Deep Learning , Drug Repositioning , Epilepsy , Molecular Dynamics Simulation , Drug Repositioning/methods , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Computer Simulation
8.
Talanta ; 277: 126440, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38897013

ABSTRACT

Owing to their incomplete digestion in the human body and inadequate removal by sewage treatment plants, antiepileptic drugs (AEDs) accumulate in water bodies, potentially affecting the exposed humans and aquatic organisms. Therefore, sensitive and reliable detection methods must be urgently developed for monitoring trace AEDs in environmental water samples. Herein, a novel phenylboronic acid-functionalized magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON-PBA) was designed and synthesized via the thiol-yne click post-modification strategy for selective and efficient magnetic solid-phase extraction (MSPE) of trace AEDs from complex sample matrices through the specific B-N coordination, π-π, hydrogen bonding, electrostatic, and host-guest interactions. Fe3O4@CD-MON-PBA exhibited a large surface area (118.5 m2 g-1), rapid magnetic responsiveness (38.6 emu g-1, 15 s), good stability and reusability (at least 8 times), and abundant binding sites for AEDs. Under optimal extraction conditions, the proposed Fe3O4@CD-MON-PBA-MSPE-HPLC-UV method exhibited a wide linear range (0.5-1000 µg L-1), low limits of detection (0.1-0.5 µg L-1) and quantitation (0.3-2 µg L-1), good anti-interference ability, and large enrichment factors (92.2-104.3 to 92.3-98.0) for four typical AEDs. This work confirmed the feasibility of the thiol-yne click post-synthesis strategy for constructing novel and efficient multifunctional magnetic CD-MONs for sample pretreatment and elucidated the significance of B-N coordination between PBA and N-containing AEDs.


Subject(s)
Anticonvulsants , Boronic Acids , Click Chemistry , Cyclodextrins , Solid Phase Extraction , Sulfhydryl Compounds , Boronic Acids/chemistry , Anticonvulsants/chemistry , Anticonvulsants/isolation & purification , Anticonvulsants/chemical synthesis , Solid Phase Extraction/methods , Cyclodextrins/chemistry , Porosity , Sulfhydryl Compounds/chemistry , Alkynes/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Limit of Detection
9.
Molecules ; 29(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931004

ABSTRACT

Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.


Subject(s)
Chemistry, Pharmaceutical , Epilepsy , Potassium Channel Blockers , Humans , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/therapeutic use , Potassium Channel Blockers/pharmacology , Chemistry, Pharmaceutical/methods , Epilepsy/drug therapy , Epilepsy/metabolism , Structure-Activity Relationship , Animals , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Sodium-Activated
10.
Top Curr Chem (Cham) ; 382(2): 20, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829467

ABSTRACT

Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.


Subject(s)
Cannabidiol , Cannabidiol/chemistry , Cannabidiol/pharmacology , Cannabidiol/metabolism , Humans , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cannabis/chemistry , Structure-Activity Relationship , Receptors, Cannabinoid/metabolism , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology
11.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38830458

ABSTRACT

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Subject(s)
Anticonvulsants , Neuroprotective Agents , Peptides , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate , Scorpion Venoms , Seizures , Animals , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Seizures/drug therapy , Seizures/prevention & control , Peptides/pharmacology , Peptides/therapeutic use , Peptides/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Pentylenetetrazole , p38 Mitogen-Activated Protein Kinases/metabolism , Hot Temperature , Epilepsy/drug therapy , Epilepsy/chemically induced , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Disease Models, Animal
12.
Biochem Biophys Res Commun ; 725: 150271, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901222

ABSTRACT

The R-type voltage-gated calcium channel CaV2.3 is predominantly located in the presynapse and is implicated in distinct types of epileptic seizures. It has consequently emerged as a molecular target in seizure treatment. Here, we determined the cryo-EM structure of the CaV2.3-α2δ1-ß1 complex in the topiramate-bound state at a 3.0 Å resolution. We provide a snapshot of the binding site of topiramate, a widely prescribed antiepileptic drug, on a voltage-gated ion channel. The binding site is located at an intracellular juxtamembrane hydrophilic cavity. Further structural analysis revealed that topiramate may allosterically facilitate channel inactivation. These findings provide fundamental insights into the mechanism underlying the inhibitory effect of topiramate on CaV and NaV channels, elucidating a previously unseen modulator binding site and thus pointing toward a route for the development of new drugs.


Subject(s)
Anticonvulsants , Calcium Channels, R-Type , Cryoelectron Microscopy , Topiramate , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Topiramate/chemistry , Topiramate/pharmacology , Humans , Allosteric Regulation/drug effects , Calcium Channels, R-Type/chemistry , Calcium Channels, R-Type/metabolism , Binding Sites , Models, Molecular , HEK293 Cells , Protein Conformation , Fructose/chemistry , Fructose/analogs & derivatives , Fructose/metabolism , Animals , Cation Transport Proteins
13.
Chem Biodivers ; 21(8): e202400642, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822644

ABSTRACT

New 2-(4-benzothiazol-2-yl-phenoxy)-1-(3,5-diphenyl-4,5-dihydro-pyrazol-1-yl)-ethanones (9a-o) have been designed and synthesized. All the synthesized compounds were characterized by thin layer chromatography and spectral analysis. The antiepileptic potential of the synthesized compounds has been tested by following standard animal screening models, including maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) models. The neurotoxic and antidepression effects of the synthesized compounds were checked by utilizing rotarod apparatus, and motor impairment test (by actophotometer) respectively. The study concluded that compounds 9c, 9d, 9f, 9i, 9n, and 9o possessed good antiepileptic potential compared to standard drugs like carbamazepine and phenytoin. The results of the rotarod performance test also established them without any neurotoxicity. The motor impairment test revealed that the synthesized compounds are also good antidepressants. In-silico studies have been performed for calculation of pharmacophore pattern, prediction of pharmacokinetic properties which determine the eligibility of synthesized compounds as orally administered molecules and interactions with the target proteins. The result of in-silico studies reinforced results obtained by in vivo study of the synthesized compounds and their possible mechanism of antiepileptic action i. e. via inhibiting voltage-gated sodium channels (VGSCs) and gamma-aminobutyric acid-A receptor.


Subject(s)
Anticonvulsants , Benzothiazoles , Pyrazoles , Anticonvulsants/chemistry , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Animals , Benzothiazoles/chemistry , Benzothiazoles/antagonists & inhibitors , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , Mice , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pentylenetetrazole , Electroshock , Structure-Activity Relationship , Seizures/drug therapy , Seizures/chemically induced , Male , Molecular Structure , Molecular Docking Simulation , Disease Models, Animal
14.
Curr Neuropharmacol ; 22(13): e240524230306, 2024.
Article in English | MEDLINE | ID: mdl-38847378

ABSTRACT

Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.


Subject(s)
Anticonvulsants , Epilepsy , Humans , Epilepsy/drug therapy , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Molecular Docking Simulation
15.
Neurochem Int ; 178: 105796, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936553

ABSTRACT

The Ocimum species present active compounds with the potential to develop drugs for treating chronic disease conditions, such as anxiety and seizures. The present study aims to investigate the anticonvulsant and anxiolytic-like effect of the essential oil from O. basilicum Linn (OEFOb) leaves and its major constituent estragole (ES) in vivo on adult zebrafish (aZF) and in silico. The aZF were treated with OEFOb or ES or vehicle and submitted to the tests of toxicity, open-field, anxiety, and convulsion and validated the interactions of the estragole on the involvement of GABAergic and serotonergic receptors by molecular docking assay. The results showed that the oral administration of OEFOb and ES did not have a toxic effect on the aZF and showed anxiolytic-like effects with the involvement of GABAA, 5-HT1, 5-HT2A/2C and 5-HT3A/3B as well on anxiety induced by alcohol withdrawal. The OEFOb and ES showed anticonvulsant potential attenuating the seizures induced by pentylenetetrazole (PTZ) by modulation of the GABAA system. Both anxiolytic and anticonvulsant effects were corroborated by the potential of the interaction of ES by in silico assay. These study samples demonstrate the pharmacological evidence and potential for using these compounds to develop new anxiolytic and anticonvulsant drugs.


Subject(s)
Allylbenzene Derivatives , Anisoles , Anti-Anxiety Agents , Anticonvulsants , Ocimum basilicum , Oils, Volatile , Plant Leaves , Seizures , Zebrafish , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/isolation & purification , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/isolation & purification , Oils, Volatile/chemistry , Plant Leaves/chemistry , Ocimum basilicum/chemistry , Anisoles/pharmacology , Anisoles/isolation & purification , Allylbenzene Derivatives/pharmacology , Seizures/drug therapy , Seizures/chemically induced , Molecular Docking Simulation , Anxiety/drug therapy , Male , Pentylenetetrazole/toxicity
16.
Int J Biol Macromol ; 272(Pt 1): 132739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825290

ABSTRACT

A stable Madhuca indica oil-in-water nanoemulsion (99-210 nm, zeta potential: > - 30 mV) was produced employing Tween 20 (surfactant) and Transcutol P (co-surfactant) (3:1). The nanoemulsion (oil: Smix = 3:7, 5:5, and 7:3) were subsequently incorporated into oxcarbazepine-loaded carboxymethylxanthan gum (DS = 1.23) dispersion. The hydrogel microspheres were formed using the ionic gelation process. Higher oil concentration had a considerable impact on particle size, drug entrapment efficiency, and buoyancy. The maximum 92 % drug entrapment efficiency was achieved with the microspheres having oil: Smix ratio 5:5. FESEM study revealed that the microspheres were spherical in shape and had an orange peel-like surface roughness. FTIR analysis revealed a hydrogen bonding interaction between drug and polymer. Thermal and x-ray examinations revealed the transformation of crystalline oxcarbazepine into an amorphous form. The microspheres had a buoyancy period of 7.5 h with corresponding release of around 83 % drug in 8 h in simulated stomach fluid, governed by supercase-II transport mechanism. In vivo neurobehavioral studies on PTZ-induced rats demonstrated that the microspheres outperformed drug suspension in terms of rotarod retention, number of crossings, and rearing activity in open field. Thus, Madhuca indica oil-in-water nanoemulsion-entrapped carboxymethyl xanthan gum microspheres appeared to be useful for monitoring oxcarbazepine release and managing epileptic seizures.


Subject(s)
Mannans , Microspheres , Animals , Rats , Mannans/chemistry , Hydrogels/chemistry , Particle Size , Epilepsy/drug therapy , Male , Drug Carriers/chemistry , Emulsions , Seizures/drug therapy , Drug Liberation , Plant Oils/chemistry , Plant Oils/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Galactose/analogs & derivatives
17.
ACS Nano ; 18(27): 17681-17693, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38920103

ABSTRACT

This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.


Subject(s)
Anticonvulsants , Drug Monitoring , Drug Monitoring/methods , Humans , Anticonvulsants/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Chalcogens/chemistry
18.
Sci Rep ; 14(1): 11400, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762571

ABSTRACT

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Subject(s)
Anticonvulsants , Drug Delivery Systems , Gelatin , Phenytoin , Silicon Dioxide , Gelatin/chemistry , Anticonvulsants/chemistry , Anticonvulsants/administration & dosage , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration , Phenytoin/chemistry , Phenytoin/administration & dosage , Drug Delivery Systems/methods , Humans , Ferric Compounds/chemistry , Drug Liberation , Drug Carriers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size
19.
Pak J Pharm Sci ; 37(1): 85-94, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741404

ABSTRACT

This research aimed to develop the phenytoin-loaded bionanosuspension by utilising the novel biopolymer from Juglans regia andreduce the long-term treatment cost of epilepsy and increase the efficiency of therapy. A novel biopolymer with remarkable inbuilt properties was isolated and used in the development of a nano capsulated dispersed system. The diverse proportions of phenytoin and biopolymer with different ratios 1:2, 1:3, 1:4, 1:5 and 1:8 were taken for the planning of details PJNC1-PJNC5. The bionanosuspension was assessed for dispersibility, pH, % entrapment efficiency, stability study and in vitro drug discharge. The formulation PJNC2 with 1:3 drug biopolymer proportion showed significant outcomes for various assessments with t50% of 16.51 h and r2 estimation of 0.9884. PJNC2 showed 92.07%±2.5 drug delivery in 36h and was stable. The bionanosuspension was found to be stable and safe for the delivery of nanosized phenytoin utilising the biopolymer having a remarkable stabiliser cum retardant property.


Subject(s)
Phenytoin , Phenytoin/chemistry , Biopolymers/chemistry , Drug Compounding , Drug Stability , Juglans/chemistry , Anticonvulsants/chemistry , Anticonvulsants/administration & dosage , Drug Liberation , Particle Size , Drug Carriers/chemistry , Nanoparticles/chemistry
20.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731442

ABSTRACT

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Subject(s)
Anticonvulsants , Pentylenetetrazole , Receptors, GABA-A , Seizures , Anticonvulsants/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Animals , Mice , Seizures/drug therapy , Seizures/chemically induced , Receptors, GABA-A/metabolism , Quinazolinones/pharmacology , Quinazolinones/chemistry , Quinazolinones/chemical synthesis , Molecular Docking Simulation , Male , Structure-Activity Relationship , Molecular Dynamics Simulation , Computer Simulation , Disease Models, Animal , Molecular Structure , Allosteric Site
SELECTION OF CITATIONS
SEARCH DETAIL