Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273145

ABSTRACT

Marine algal toxins have garnered significant attention in the research community for their unique biochemical properties and potential medical applications. These bioactive compounds, produced by microalgae, pose significant risks due to their high toxicity, yet offer promising therapeutic benefits. Despite extensive research identifying over 300 marine algal toxins, including azaspiracids, brevetoxins, cyclic imines, and yessotoxins, gaps remain in the understanding of their pharmacological potential. In this paper, we critically review the classification, bioactive components, toxicology, pharmacological activities, and mechanisms of these toxins, with a particular focus on their clinical applications. Our motivation stems from the increasing interest in marine algal toxins as candidates for drug development, driven by their high specificity and affinity for various biological receptors. We aim to bridge the gap between toxicological research and therapeutic application, offering insights into the advantages and limitations of these compounds in comparison to other bioactive substances. This review not only enhances the understanding of marine algal toxins' complexity and diversity, but also highlights their extensive application potential in medicine and bioscience, providing a foundation for future research and development in this field.


Subject(s)
Marine Toxins , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/pharmacology , Humans , Animals , Oxocins/toxicity , Oxocins/chemistry , Oxocins/pharmacology , Microalgae/chemistry , Polyether Toxins , Mollusk Venoms
2.
Se Pu ; 42(9): 819-826, 2024 Sep.
Article in Chinese | MEDLINE | ID: mdl-39198941

ABSTRACT

Red tides are a type of natural marine disaster caused by harmful algae characterized by a high toxicity, wide distribution, and long duration. Since the concentration of algal toxins in seawater increases with the occurrence of red tides, algal toxins detected in seawater could be used to predict the occurrence and evolution of red tides. Brevetoxin-A (BTX-A) is a secondary metabolite produced by the harmful algae Karenia brevis, whose detection in seawater could form the basis of an accurate warning system for incoming red tides. However, due to the inherent complexity of the seawater matrix and the extremely low levels of BTX-A in seawater, the use of instruments for its direct detection is difficult. Therefore, there is an urgent need to develop a sample pretreatment method for the efficient enrichment of BTX-A in seawater. In this study, a metal-organic backbone material (UiO-66) and its composite with silica microspheres (SiO2@UiO-66) were successfully synthesized using the solvothermal method. The prepared SiO2@UiO-66 exhibited good hydrophilicity, water stability, and large specific surface area. Furthermore, it also exhibited hydrogen bonding and electrostatic interactions with BTX-A, had a strong affinity for BTX-A, and was able to efficiently adsorb BTX-A in complex matrices. Therefore, SiO2@UiO-66 showed potential as a novel packing material for the extraction of BTX-A from solid phase extraction columns. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a highly sensitive detection method for the determination of BTX-A in marine water was established. The established analytical method had a low detection limit (3.0 pg/mL), a wide linear range (10.0 -200.0 pg/mL), and a good linear relationship (R=0.9992). Combined with the Fujian Province Red Tide Monitoring and Early Warning Information 2021 issued by the Fujian Provincial Oceanic and Fisheries Bureau, the analytical method established herein was successfully applied to analyze and monitor the content of BTX-A in actual seawater samples. This highlights the proposed system's potential for use as an early warning factor in the monitoring of red tides, representing a simple and fast pretreatment methodology for the detection of BTX-A in seawater.


Subject(s)
Marine Toxins , Metal-Organic Frameworks , Oxocins , Seawater , Solid Phase Extraction , Zirconium , Seawater/chemistry , Oxocins/analysis , Oxocins/chemistry , Metal-Organic Frameworks/chemistry , Zirconium/chemistry , Water Pollutants, Chemical/analysis , Exotoxins/analysis , Exotoxins/chemistry , Polyether Toxins
3.
Chemosphere ; 362: 142668, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906188

ABSTRACT

Harmful algal blooms (HABs), especially those caused by toxic dinoflagellates, are spreading in marine ecosystems worldwide. Notably, the prevalence of Karenia brevis blooms and potent brevetoxins (BTXs) pose a serious risk to public health and marine ecosystems. Therefore, developing an environmentally friendly method to effectively control HABs and associated BTXs has been the focus of increasing attention. As a promising method, modified clay (MC) application could effectively control HABs. However, the environmental fate of BTXs during MC treatment has not been fully investigated. For the first time, this study revealed the effect and mechanism of BTX removal by MC from the perspective of adsorption and transformation. The results indicated that polyaluminium chloride-modified clay (PAC-MC, a typical kind of MC) performed well in the adsorption of BTX2 due to the elevated surface potential and more binding sites. The adsorption process was a spontaneous endothermic process that conformed to pseudo-second-order adsorption kinetics (k2 = 6.8 × 10-4, PAC-MC = 0.20 g L-1) and the Freundlich isotherm (Kf = 55.30, 20 °C). In addition, detailed product analysis using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) indicated that PAC-MC treatment effectively removed the BTX2 and BTX3, especially those in the particulate forms. Surprisingly, PAC-MC could promote the transformation of BTX2 to derivatives, including OR-BTX2, OR-BTX3, and OR-BTX-B5, which were proven to have lower cytotoxicity.


Subject(s)
Clay , Dinoflagellida , Harmful Algal Bloom , Marine Toxins , Adsorption , Clay/chemistry , Dinoflagellida/growth & development , Oxocins/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Polyether Toxins
4.
J Nat Prod ; 87(4): 743-752, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38359467

ABSTRACT

Nuclear magnetic resonance (NMR) chemical shift calculations are powerful tools for structure elucidation and have been extensively employed in both natural product and synthetic chemistry. However, density functional theory (DFT) NMR chemical shift calculations are usually time-consuming, while fast data-driven methods often lack reliability, making it challenging to apply them to computationally intensive tasks with a high requirement on quality. Herein, we have constructed a 54-layer-deep graph convolutional network for 13C NMR chemical shift calculations, which achieved high accuracy with low time-cost and performed competitively with DFT NMR chemical shift calculations on structure assignment benchmarks. Our model utilizes a semiempirical method, GFN2-xTB, and is compatible with a broad variety of organic systems, including those composed of hundreds of atoms or elements ranging from H to Rn. We used this model to resolve the controversial J/K ring junction problem of maitotoxin, which is the largest whole molecule assigned by NMR calculations to date. This model has been developed into user-friendly software, providing a useful tool for routine rapid structure validation and assignation as well as a new approach to elucidate the large structures that were previously unsuitable for NMR calculations.


Subject(s)
Density Functional Theory , Molecular Structure , Carbon-13 Magnetic Resonance Spectroscopy/methods , Oxocins/chemistry , Software
5.
Mar Drugs ; 19(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34940655

ABSTRACT

In recent decades, more than 130 potentially toxic metabolites originating from dinoflagellate species belonging to the genus Karenia or metabolized by marine organisms have been described. These metabolites include the well-known and large group of brevetoxins (BTXs), responsible for foodborne neurotoxic shellfish poisoning (NSP) and airborne respiratory symptoms in humans. Karenia spp. also produce brevenal, brevisamide and metabolites belonging to the hemi-brevetoxin, brevisin, tamulamide, gymnocin, gymnodimine, brevisulcenal and brevisulcatic acid groups. In this review, we summarize the available knowledge in the literature since 1977 on these various identified metabolites, whether they are produced directly by the producer organisms or biotransformed in marine organisms. Their structures and physicochemical properties are presented and discussed. Among future avenues of research, we highlight the need for more toxin occurrence data with analytical techniques, which can specifically determine the analogs present in samples. New metabolites have yet to be fully described, especially the groups of metabolites discovered in the last two decades (e.g tamulamides). Lastly, this work clarifies the different nomenclatures used in the literature and should help to harmonize practices in the future.


Subject(s)
Dinoflagellida/metabolism , Marine Toxins/metabolism , Oxocins/metabolism , Shellfish , Animals , Aquatic Organisms , Dinoflagellida/chemistry , Humans , Marine Toxins/chemistry , Oxocins/chemistry , Shellfish Poisoning
6.
Mar Drugs ; 19(8)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34436299

ABSTRACT

Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.


Subject(s)
Ciguatera Poisoning , Dinoflagellida/chemistry , Marine Toxins/chemistry , Oxocins/chemistry , Animals , Aquatic Organisms , Mediterranean Sea , Structure-Activity Relationship
7.
Article in English | MEDLINE | ID: mdl-34343946

ABSTRACT

A single laboratory method performance verification is reported for a rapid sensitive UHPLC-MS/MS method for the quantification of eight cyclic imine and two brevetoxin analogues in two bivalve shellfish matrices: mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas). Targeted cyclic imine analogues were from the spirolide, gymnodimine and pinnatoxin groups, namely 20-Me-SPX-C, 13-desMe-SPX-C, 13,19-didesMe-SPX-C, GYM-A, 12-Me-GYM, PnTx-E, PnTx-F and PnTx-G. Brevetoxin analogues consisted of the shellfish metabolites BTX-B5 and S-desoxy-BTX-B2. A rapid dispersive extraction was used as well as a fast six-minute UHPLC-MS/MS analysis. Mobile phase prepared using ammonium fluoride and methanol was optimised for both chromatographic separation and MS/MS response to suit all analytes. Method performance verification checks for both matrices were carried out. Matrix influence was acceptable for the majority of analogues with the MS response for all analogues being linear across an appropriate range of concentrations. In terms of limits of detection and quantitation the method was shown to be highly sensitive when compared with other methods. Acceptable recoveries were found with most analogues, with laboratory precision in terms of intra- and inter-batch precision deemed appropriate. The method was applied to environmental shellfish samples with results showing low concentrations of cyclic imines to be present. The method is fast and highly sensitive for the detection and quantification of all targeted analogues, in both mussel and oyster matrices. Consequently, the method has been shown to provide a useful tool for simultaneous monitoring for the presence or future emergence of these two toxin groups in shellfish.


Subject(s)
Bivalvia/chemistry , Chromatography, High Pressure Liquid/methods , Marine Toxins/analysis , Ostreidae/chemistry , Tandem Mass Spectrometry/methods , Animals , Imines/analysis , Imines/chemistry , Imines/isolation & purification , Limit of Detection , Linear Models , Liquid-Liquid Extraction , Marine Toxins/chemistry , Marine Toxins/isolation & purification , Oxocins/analysis , Oxocins/chemistry , Oxocins/isolation & purification , Reproducibility of Results
8.
Mar Drugs ; 19(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356818

ABSTRACT

In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.


Subject(s)
Bivalvia , Environmental Monitoring , Marine Toxins/chemistry , Oxocins/chemistry , Animals , Aquatic Organisms , France , Mediterranean Sea , Seafood
9.
Curr Drug Metab ; 22(6): 491-499, 2021.
Article in English | MEDLINE | ID: mdl-33605854

ABSTRACT

BACKGROUND: Caesalpinia sappan L. is a traditional medicinal plant that is used to promote blood circulation and treat stroke in China. Protosappanin B (PTB) is a unique homoisoflavone compound isolated from Sappan Lignum (the heartwood of Caesalpinia sappan L). In a previous study, the metabolic fate of PTB remained unknown. OBJECTIVE: To explore whether PTB is extensively metabolized, the metabolites of PTB in bile, plasma, urine, feces, and intestinal bacteria samples in rats were investigated. METHODS: The biosamples were investigated by ultraperformance liquid chromatography combined with time-offlight mass spectrometry (UPLC-TOF-MS/MS) with MetabolitePilot software. RESULTS: 28 metabolites were identified in the biosamples: 18 metabolites in rat bile, 8 in plasma, 20 in feces, 7 in urine and 2 in intestinal bacteria samples. Both phase I and phase II metabolites were observed. Metabolite conversion occurred via 9 proposed pathways: sulfate conjugation, glucuronide conjugation, bis-glucuronide conjugation, glucose conjugation, dehydration, oxidation, hydrolysis, methylation and hydroxymethylene loss. The metabolic pathways differed among biosamples and exhibited different distributions. Among these pathways, the most important was sulfate and glucuronide conjugation. CONCLUSION: The results showed that the small intestinal and biliary routes play an important role in the clearance and excretion of PTB. The main sites of metabolism in the PTB chemical structure were the phenolic hydroxyl and the side-chains on the eight-element ring.


Subject(s)
Bile/metabolism , Feces/chemistry , Gastrointestinal Microbiome , Oxocins/blood , Oxocins/urine , Animals , Caesalpinia , Chromatography, High Pressure Liquid , Chromatography, Liquid , Male , Oxocins/chemistry , Oxocins/metabolism , Rats , Rats, Sprague-Dawley
10.
Rapid Commun Mass Spectrom ; 34(19): e8859, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32530533

ABSTRACT

RATIONALE: The dinoflagellate genera Gambierdiscus and Fukuyoa are producers of toxins responsible for Ciguatera Poisoning (CP). Although having very low oral potency, maitotoxins (MTXs) are very toxic following intraperitoneal injection and feeding studies have shown they may accumulate in fish muscle. To date, six MTX congeners have been described but two congeners (MTX2 and MTX4) have not yet been structurally elucidated. The aim of the present study was to further characterize MTX4. METHODS: Chemical analysis was performed using liquid chromatography coupled to a diode-array detector (DAD) and positive ion mode high-resolution mass spectrometry (LC/HRMS) on partially purified extracts of G. excentricus (strain VGO792). HRMS/MS studies were also carried out to tentatively explain the fragmentation pathways of MTX and MTX4. RESULTS: The comparison of UV and HRMS (ESI+ ) spectra between MTX and MTX4 led us to propose the elemental formula of MTX4 (C157 H241 NO68 S2 , as the unsalted molecule). The comparison of the theoretical and measured m/z values of the doubly charged ions of the isotopic profile in ESI+ were coherent with the proposed elemental formula of MTX4. The study of HRMS/MS spectra on the tri-ammoniated adduct ([M - H + 3NH4 ]2+ ) of both molecules gave additional information about structural features. The cleavage observed, probably located at C99 -C100 in both MTX and MTX4, highlighted the same A-side product ion shared by the two molecules. CONCLUSIONS: All these investigations on the characterization of MTX4 contribute to highlighting that MTX4 belongs to the same structural family of MTXs. However, to accomplish a complete structural elucidation of MTX4, an NMR-based study and LC/HRMSn investigation will have to be carried out.


Subject(s)
Dinoflagellida/chemistry , Marine Toxins , Oxocins , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, Liquid/methods , Magnetic Resonance Spectroscopy , Marine Toxins/analysis , Marine Toxins/chemistry , Oxocins/analysis , Oxocins/chemistry
11.
Nat Prod Res ; 34(7): 1008-1013, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30600714

ABSTRACT

Two new C15-acetogenins, 4-epi-isolaurallene (1) and 4-epi-itomanallene A (2) were isolated from a population of marine red alga Laurencia nangii Masuda from Carrington Reef. The structures of these compounds were determined intensively by NMR and HRESIMS data. Their configurations were elucidated by detailed comparison of chemical shifts, germinal protons splitting and NOE correlations with known and synthesized analogues. In addition, antibacterial activities of these compounds were evaluated. These compounds would serve as diastereomeric models for future reference. Since the isolaurallene, neolaurallene, 9-acetoxy-1,10,12-tribromo-4,7:6,13-bisepoxypentadeca-1,2-diene, itomanallene A and laurendecumallene A were isolated, compounds 1 and 2 were the sixth example of C15-acetogenin with dioxabicyclo[7.3.0]dodecene skeleton.


Subject(s)
Acetogenins/chemistry , Heterocyclic Compounds, 2-Ring/isolation & purification , Laurencia/chemistry , Oxocins/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Oxocins/chemistry
12.
Toxins (Basel) ; 11(9)2019 09 03.
Article in English | MEDLINE | ID: mdl-31484365

ABSTRACT

Brevetoxins are produced by dinoflagellates such as Karenia brevis in warm-water red tides and cause neurotoxic shellfish poisoning. They bind to voltage-gated sodium channels at neurotoxin receptor 5, making the channels more active by shifting the voltage-dependence of activation to more negative potentials and by slowing the inactivation process. Previous work using photoaffinity labeling identified binding to the IS6 and IVS5 transmembrane segments of the channel α subunit. We used alanine-scanning mutagenesis to identify molecular determinants for brevetoxin binding in these regions as well as adjacent regions IVS5-SS1 and IVS6. Most of the mutant channels containing single alanine substitutions expressed functional protein in tsA-201 cells and bound to the radioligand [42-3H]-PbTx3. Binding affinity for the great majority of mutant channels was indistinguishable from wild type. However, transmembrane segments IS6, IVS5 and IVS6 each contained 2 to 4 amino acid positions where alanine substitution resulted in a 2-3-fold reduction in brevetoxin affinity, and additional mutations caused a similar increase in brevetoxin affinity. These findings are consistent with a model in which brevetoxin binds to a protein cleft comprising transmembrane segments IS6, IVS5 and IVS6 and makes multiple distributed interactions with these α helices. Determination of brevetoxin affinity for Nav1.2, Nav1.4 and Nav1.5 channels showed that Nav1.5 channels had a characteristic 5-fold reduction in affinity for brevetoxin relative to the other channel isoforms, suggesting the interaction with sodium channels is specific despite the distributed binding determinants.


Subject(s)
Marine Toxins/metabolism , Oxocins/metabolism , Voltage-Gated Sodium Channels/metabolism , Binding Sites , Cell Line , Humans , Marine Toxins/chemistry , Mutation , Oxocins/chemistry , Protein Isoforms , Voltage-Gated Sodium Channels/genetics
13.
Ecotoxicology ; 28(9): 1085-1104, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31559558

ABSTRACT

Many species of marine life in southwestern Florida, including sea turtles, are impacted by blooms of the toxic dinoflagellate, Karenia brevis. Sublethal exposure to toxins produced by K. brevis has been shown to impact sea turtle health. Since all sea turtles in the Gulf of Mexico have protected status, a freshwater turtle, Trachemys scripta, was used as a model for immune system effects following experimental exposure to a predominant brevetoxin congener in K. brevis blooms, PbTx-3. Exposure to PbTx-3 was oral or intratracheal and health effects were assessed using a suite of immune function parameters: innate immune function (phagocytosis, plasma lysozyme activity), adaptive immune function (lymphocyte proliferation), and measures of oxidative stress (superoxide dismutase (SOD) and glutathione-S-transferase (GST) activity in plasma). Inflammation was also measured using plasma protein electrophoresis. In addition, differential expression of genes in peripheral blood leukocytes was determined using suppression subtractive hybridization followed by real-time PCR of specific genes. The primary immune effects of sublethal brevetoxin exposure in T. scripta following PbTx-3 administration, appear to be an increase in oxidative stress, a decrease in lysozyme activity, and modulation of immune function through lymphocyte proliferation responses. Plasma protein electrophoresis showed a decreased A:G ratio which may indicate potential inflammation. Genes coding for oxidative stress, such as thioredoxin and GST, were upregulated in exposed animals. That sublethal brevetoxin exposures impact immune function components suggests potential health implications for sea turtles naturally exposed to toxins. Knowledge of physiological stressors induced by brevetoxins may contribute to the ultimate goal of developing directed treatment strategies in exposed animals for reduced mortality resulting from red tide toxin exposure in sea turtles.


Subject(s)
Immunity, Innate/drug effects , Marine Toxins/toxicity , Turtles/physiology , Animals , Marine Toxins/chemistry , Oxocins/chemistry , Toxicity Tests
14.
Org Lett ; 21(19): 8027-8030, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31523969

ABSTRACT

Synthesis of the fused polycyclic ether motif comprising the EFG rings of the marine ladder polyethers tamulamides A and B has been achieved via two different etherification strategies. Ultimately, a reductive etherification approach proved most successful due to tolerance of the G ring substitution and provided the EFG 6,7,6 ring system in 58% yield.


Subject(s)
Marine Toxins/chemical synthesis , Oxocins/chemical synthesis , Marine Toxins/chemistry , Molecular Conformation , Oxocins/chemistry , Stereoisomerism
15.
Toxicon ; 164: 44-50, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30954452

ABSTRACT

Compounds similar to maitotoxin (MTX) have been isolated from several laboratory strains of the dinoflagellate Gambierdiscus spp. from the Caribbean. Mass spectral results suggest that these compounds differ from MTX by the loss of one sulfate group and, in some cases, the loss of one methyl group with the addition of one degree of unsaturation. NMR experiments, using approximately 50 nmol of one of these compounds, have demonstrated that the 9-sulfo group of MTX is still present, suggesting that these compounds are 40-desulfo congeners of MTX.


Subject(s)
Dinoflagellida/chemistry , Marine Toxins/chemistry , Oxocins/chemistry , Caribbean Region , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure
16.
Toxins (Basel) ; 11(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30717108

ABSTRACT

Gambierdiscus species are the producers of the marine toxins ciguatoxins and maitotoxins which cause worldwide human intoxications recognized as Ciguatera Fish Poisoning. A deep chemical investigation of a cultured strain of G. belizeanus, collected in the Caribbean Sea, led to the identification of a structural homologue of the recently described gambierone isolated from the same strain. The structure was elucidated mainly by comparison of NMR and MS data with those of gambierone and ascertained by 2D NMR data analyses. Gratifyingly, a close inspection of the MS data of the new 44-methylgambierone suggests that this toxin would actually correspond to the structure of maitotoxin-3 (MTX3, m/z 1039.4957 for the protonated adduct) detected in 1994 in a Pacific strain of Gambierdiscus and recently shown in routine monitoring programs. Therefore, this work provides for the first time the chemical identification of the MTX3 molecule by NMR. Furthermore, biological data confirmed the similar activities of both gambierone and 44-methylgambierone. Both gambierone and MTX3 induced a small increase in the cytosolic calcium concentration but only MTX3 caused cell cytotoxicity at micromolar concentrations. Moreover, chronic exposure of human cortical neurons to either gambierone or MTX3 altered the expression of ionotropic glutamate receptors, an effect already described before for the synthetic ciguatoxin CTX3C. However, even when gambierone and MTX3 affected glutamate receptor expression in a similar manner their effect on receptor expression differed from that of CTX3C, since both toxins decreased AMPA receptor levels while increasing N-methyl-d-aspartate (NMDA) receptor protein. Thus, further studies should be pursued to clarify the similarities and differences in the biological activity between the known ciguatoxins and the new identified molecule as well as its contribution to the neurological symptoms of ciguatera.


Subject(s)
Marine Toxins/chemistry , Marine Toxins/pharmacology , Oxocins/chemistry , Oxocins/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Ciguatoxins/pharmacology , Dinoflagellida , Ethers/chemistry , Ethers/pharmacology , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Neurons/drug effects , Neurons/metabolism , Receptors, Glutamate/metabolism
17.
Article in English | MEDLINE | ID: mdl-30476593

ABSTRACT

The activities of two effectors, brevetoxin (PbTx) and manumycin-A (Man-A), of thioredoxin reductase (TrxR) have been evaluated against a series of fourteen TrxR orthologs originating from mammals, insects and protists and several mutants. Man-A, a molecule with numerous electrophilic sites, forms a covalent adduct with most selenocystine (Sec)-containing TrxR enzymes. The evidence also demonstrates that Man-A can form covalent adducts with some non-Sec-containing enzymes. The activities of TrxR enzymes towards various substrates are moderated by Man-A either positively or negatively depending on the enzyme. In general, the reduction of substrates by Sec-containing TrxR is inhibited and NADPH oxidase activity is activated. For non-Sec-containing TrxR the effect of Man-A on the reduction of substrates is variable, but NADPH oxidase activity can be activated even in the absence of covalent modification of TrxR. The effect of PbTx is less pronounced. A smaller subset of enzymes is affected by PbTx. With a single exception, the activities of most of this subset are activated. Although both PbTx variants can react with selenocysteine, a stable covalent adduct is not formed with any of the TrxR enzymes. The key findings from this work are (i) the identification of an alternate mechanism of toxicity for the algal toxin brevetoxin (ii) the demonstration that covalent modification of TrxR is not a prerequisite for the activation of NADPH oxidase activity of TrxR and (iii) the identification of an inhibitor which can discriminate between cytosolic and mitochondrial TrxR.


Subject(s)
Marine Toxins/pharmacology , Oxocins/pharmacology , Polyenes/pharmacology , Polyunsaturated Alkamides/pharmacology , Thioredoxin-Disulfide Reductase/metabolism , Animals , Gene Expression Regulation, Enzymologic/drug effects , Humans , Insecta , Mammals , Marine Toxins/chemistry , NADPH Oxidases/metabolism , Oxocins/chemistry , Polyenes/chemistry , Polyunsaturated Alkamides/chemistry , Species Specificity , Thioredoxins/metabolism
18.
Yakugaku Zasshi ; 138(11): 1335-1344, 2018.
Article in Japanese | MEDLINE | ID: mdl-30381641

ABSTRACT

Marine natural products and biologically active compounds often contain cyclic ether units. Thus, regio- and stereoselective construction of these structures has long been a topic of interest in organic synthesis. This review summarizes new synthetic approaches to polycyclic ether natural products utilizing the features of chemical elements.


Subject(s)
Biological Products/chemical synthesis , Elements , Ethers, Cyclic/chemical synthesis , Marine Biology , Marine Toxins/chemical synthesis , Oxocins/chemical synthesis , Animals , Biological Products/chemistry , Catalysis , Chemistry, Organic/methods , Ethers, Cyclic/chemistry , Gold , Hydrophobic and Hydrophilic Interactions , Marine Toxins/chemistry , Mice , Molecular Conformation , Organic Chemistry Phenomena , Oxocins/chemistry , Rhenium/chemistry , Stereoisomerism
19.
J Wildl Dis ; 54(1): 142-146, 2018 01.
Article in English | MEDLINE | ID: mdl-28829928

ABSTRACT

: On 16 September 2015, a red tide ( Karenia brevis) bloom impacted coastal areas of Padre Island National Seashore Park, Texas, US. Two days later and about 0.9 km inland, 30-40 adult green tree frogs ( Hyla cinerea) were found dead after displaying tremors, weakness, labored breathing, and other signs of neurologic impairment. A rainstorm accompanied by high winds, rough surf, and high tides, which could have aerosolized brevetoxin, occurred on the morning of the mortality event. Frog carcasses were in good body condition but contained significant brevetoxin in tissues. Tissue brevetoxin was also found in two dead or dying spotted ground squirrels ( Xerospermophilus spilosoma) and a coyote ( Canis latrans) found in the area. Rainwater collected from the location of the mortality event contained brevetoxin. Green tree frog and ground squirrel mortality has not been previously attributed to brevetoxin exposure and such mortality suggested that inland toxin transport, possibly through aerosols, rainfall, or insects, may have important implications for coastal species.


Subject(s)
Anura , Coyotes , Environmental Exposure , Marine Toxins/toxicity , Mycotoxicosis/veterinary , Oxocins/toxicity , Sciuridae , Animals , Environmental Monitoring , Harmful Algal Bloom , Islands , Marine Toxins/chemistry , Mycotoxicosis/mortality , Oxocins/chemistry , Texas
20.
J Chem Theory Comput ; 13(11): 5479-5485, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29068678

ABSTRACT

An efficient scheme for the calculation of Born-Oppenheimer molecular dynamics (BOMD) simulations is introduced. It combines the corrected small basis set Hartree-Fock (HF-3c) method by Sure and Grimme [J. Comput. Chem. 2013, 43, 1672], extended Lagrangian BOMD (XL-BOMD) by Niklasson et al. [J. Chem. Phys. 2009, 130, 214109], and the calculation of the two electron integrals on graphics processing units (GPUs) [J. Chem. Phys. 2013, 138, 134114; J. Chem. Theory Comput. 2015, 11, 918]. To explore the parallel performance of our strong scaling implementation of the method, we present timings and extract, as its validation and first illustrative application, high-quality vibrational spectra from simulated trajectories of ß-carotene, paclitaxel, and liquid water (up to 500 atoms). We conclude that the presented BOMD scheme may be used as a cost-efficient and reliable tool for computing vibrational spectra and thermodynamics of large molecular systems including explicit solvent molecules containing 500 atoms and more. Simulating 50 ps of maitotoxin (nearly 500 atoms) employing time steps of 0.5 fs requires ∼3 weeks on 12 CPUs (Intel Xeon E5 2620 v3) with 24 GPUs (AMD FirePro 3D W8100).


Subject(s)
Molecular Dynamics Simulation , Vibration , Carotenoids/chemistry , Marine Toxins/chemistry , Oxocins/chemistry , Paclitaxel/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL