Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 533, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225257

RESUMEN

Due to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-µm -diameter vertical stack. Leveraging the efficient motion of encapsulated cations inside this polymer stack and the opposite doping mechanisms of the constituent polymers, we demonstrate high current rectification ratios ([Formula: see text]) and fast switching speeds (230 µs). We integrate p-n organic electrochemical diodes with organic electrochemical transistors in the front-end pixel of a recording array. This configuration facilitates the access of organic electrochemical transistor output currents within a large network operating in the same electrolyte, while minimizing crosstalk from neighboring elements due to minimized reverse-biased leakage. Furthermore, we use these devices to fabricate time-division-multiplexed amplifier arrays. Lastly, we show that, when fabricated in a shank format, this technology enables the multiplexing of amplified local field potentials directly in the active recording pixel (26-µm diameter) in a minimally invasive form factor with shank cross-sectional dimensions of only 50×8 [Formula: see text].

2.
Adv Sci (Weinh) ; : e2306716, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38161228

RESUMEN

Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.

3.
Adv Sci (Weinh) ; 10(31): e2300473, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37661572

RESUMEN

Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors.


Asunto(s)
Neuronas , Semiconductores , Estimulación Química , Técnicas de Cultivo de Célula , Polímeros/química
4.
Adv Healthc Mater ; 12(27): e2301194, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37171457

RESUMEN

Tumor-derived extracellular vesicles (TEVs) induce the epithelial-to-mesenchymal transition (EMT) in nonmalignant cells to promote invasion and cancer metastasis, representing a novel therapeutic target in a field severely lacking in efficacious antimetastasis treatments. However, scalable technologies that allow continuous, multiparametric monitoring for identifying metastasis inhibitors are absent. Here, the development of a functional phenotypic screening platform based on organic electrochemical transistors (OECTs) for real-time, noninvasive monitoring of TEV-induced EMT and screening of antimetastatic drugs is reported. TEVs derived from the triple-negative breast cancer cell line MDA-MB-231 induce EMT in nonmalignant breast epithelial cells (MCF10A) over a nine-day period, recapitulating a model of invasive ductal carcinoma metastasis. Immunoblot analysis and immunofluorescence imaging confirm the EMT status of TEV-treated cells, while dual optical and electrical readouts of cell phenotype are obtained using OECTs. Further, heparin, a competitive inhibitor of cell surface receptors, is identified as an effective blocker of TEV-induced EMT. Together, these results demonstrate the utility of the platform for TEV-targeted drug discovery, allowing for facile modeling of the transient drug response using electrical measurements, and provide proof of concept that inhibitors of TEV function have potential as antimetastatic drug candidates.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Detección Precoz del Cáncer , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Melanoma Cutáneo Maligno
5.
Artículo en Inglés | MEDLINE | ID: mdl-36749895

RESUMEN

The tight regulation of the glucose concentration in the body is crucial for balanced physiological function. We developed an electrochemical transistor comprising an n-type conjugated polymer film in contact with a catalytic enzyme for sensitive and selective glucose detection in bodily fluids. Despite the promise of these sensors, the property of the polymer that led to such high performance has remained unknown, with charge transport being the only characteristic under focus. Here, we studied the impact of the polymer chemical structure on film surface properties and enzyme adsorption behavior using a combination of physiochemical characterization methods and correlated our findings with the resulting sensor performance. We developed five n-type polymers bearing the same backbone with side chains differing in polarity and charge. We found that the nature of the side chains modulated the film surface properties, dictating the extent of interactions between the enzyme and the polymer film. Quartz crystal microbalance with dissipation monitoring studies showed that hydrophobic surfaces retained more enzymes in a densely packed arrangement, while hydrophilic surfaces captured fewer enzymes in a flattened conformation. X-ray photoelectron spectroscopy analysis of the surfaces revealed strong interactions of the enzyme with the glycolated side chains of the polymers, which improved for linear side chains compared to those for branched ones. We probed the alterations in the enzyme structure upon adsorption using circular dichroism, which suggested protein denaturation on hydrophobic surfaces. Our study concludes that a negatively charged, smooth, and hydrophilic film surface provides the best environment for enzyme adsorption with desired mass and conformation, maximizing the sensor performance. This knowledge will guide synthetic work aiming to establish close interactions between proteins and electronic materials, which is crucial for developing high-performance enzymatic metabolite biosensors and biocatalytic charge-conversion devices.

6.
Adv Mater ; 34(35): e2202972, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35772173

RESUMEN

Conventional biosensors rely on the diffusion-dominated transport of the target analyte to the sensor surface. Consequently, they require an incubation step that may take several hours to allow for the capture of analyte molecules by sensor biorecognition sites. This incubation step is a primary cause of long sample-to-result times. Here, alternating current electrothermal flow (ACET) is integrated in an organic electrochemical transistor (OECT)-based sensor to accelerate the device operation. ACET is applied to the gate electrode functionalized with nanobody-SpyCatcher fusion proteins. Using the SARS-CoV-2 spike protein in human saliva as an example target, it is shown that ACET enables protein recognition within only 2 min of sample exposure, supporting its use in clinical practice. The ACET integrated sensor exhibits better selectivity, higher sensitivity, and lower limit of detection than the equivalent sensor with diffusion-dominated operation. The performance of ACET integrated sensors is compared with two types of organic semiconductors in the channel and grounds for device-to-device variations are investigated. The results provide guidelines for the channel material choice in OECT-based biochemical sensors, and demonstrate that ACET integration substantially decreases the detection speed while increasing the sensitivity and selectivity of transistor-based sensors.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Biosensibles/métodos , Convección , Técnicas Electroquímicas/métodos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Transistores Electrónicos
7.
Adv Sci (Weinh) ; 9(2): e2101711, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741447

RESUMEN

There is increasing demand for direct in situ metabolite monitoring from cell cultures and in vivo using implantable devices. Electrochemical biosensors are commonly preferred due to their low-cost, high sensitivity, and low complexity. Metabolite detection, however, in cultured cells or sensitive tissue is rarely shown. Commonly, glucose sensing occurs indirectly by measuring the concentration of hydrogen peroxide, which is a by-product of the conversion of glucose by glucose oxidase. However, continuous production of hydrogen peroxide in cell media with high glucose is toxic to adjacent cells or tissue. This challenge is overcome through a novel, stacked enzyme configuration. A primary enzyme is used to provide analyte sensitivity, along with a secondary enzyme which converts H2 O2 back to O2 . The secondary enzyme is functionalized as the outermost layer of the device. Thus, production of H2 O2 remains local to the sensor and its concentration in the extracellular environment does not increase. This "biostack" is integrated with organic electrochemical transistors to demonstrate sensors that monitor glucose concentration in cell cultures in situ. The "biostack" renders the sensors nontoxic for cells and provides highly sensitive and stable detection of metabolites.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glucosa/análisis , Glucosa/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Células Cultivadas , Humanos
8.
Small Methods ; 5(12): e2100819, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928032

RESUMEN

MXene-based hydrogels have received significant attention due to several promising properties that distinguish them from conventional hydrogels. In this study, it is shown that both strain and pH level can be exploited to tune the electronic and ionic transport in MXene-based hydrogel (M-hydrogel), which consists of MXene (Ti3 C2 Tx )-polyacrylic acid/polyvinyl alcohol hydrogel. In particular, the strain applied to the M-hydrogel changes MXene sheet orientation which leads to modulation of ionic transport within the M-hydrogel, due to strain-induced orientation of the surface charge-guided ionic pathway. Simultaneously, the reorientation of MXene sheets under the axial strain increases the electronic resistance of the M-hydrogel due to the loss of the percolative network of conductive MXene sheets during the stretching process. The iontronic characteristics of the M-hydrogel can thus be tuned by strain and pH, which allows using the M-hydrogel as a muscle fatigue sensor during exercise. A fully functional M-hydrogel is developed for real-time measurement of muscle fatigue during exercise and coupled it to a smartphone to provide a portable or wearable digital readout. This concept can be extended to other fields that require accurate analysis of constantly changing physical and chemical conditions, such as physiological changes in the human body.


Asunto(s)
Fatiga Muscular/fisiología , Alcohol Polivinílico/química , Titanio/química , Conductividad Eléctrica , Diseño de Equipo , Ejercicio Físico , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Dispositivos Electrónicos Vestibles
9.
ACS Biomater Sci Eng ; 7(12): 5585-5597, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34802228

RESUMEN

Cancer-derived exosomes (cEXOs) facilitate transfer of information between tumor and human primary stromal cells, favoring cancer progression. Although the mechanisms used during this information exchange are still not completely understood, it is known that binding is the initial contact established between cEXOs and cells. Hence, studying binding and finding strategies to block it are of great therapeutic value. However, such studies are challenging for a variety of reasons, including the need for human primary cell culture, the difficulty in decoupling and isolating binding from internalization and cargo delivery, and the lack of techniques to detect these specific interactions. In this work, we created a supported biomimetic stem cell membrane incorporating membrane components from human primary adipose-derived stem cells (ADSCs). We formed the supported membrane on glass and on multielectrode arrays to offer the dual option of optical or electrical detection of cEXO binding to the membrane surface. Using our platform, we show that cEXOs bind to the stem cell membrane and that binding is blocked when an antibody to integrin ß1, a component of ADSC surface, is exposed to the membrane surface prior to cEXOs. To test the biological outcome of blocking this interaction, we first confirm that adding cEXOs to cultured ADSCs leads to the upregulation of vascular endothelial growth factor, a measure of proangiogenic activity. Next, when ADSCs are first blocked with anti-integrin ß1 and then exposed to cEXOs, the upregulation of proangiogenic activity and cell proliferation are significantly reduced. This biomimetic membrane platform is the first cell-free label-free in vitro platform for the recapitulation and study of cEXO binding to human primary stem cells with potential for therapeutic molecule screening as it is compatible with scale-up and multiplexing.


Asunto(s)
Exosomas , Neoplasias , Biomimética , Humanos , Células Madre , Factor A de Crecimiento Endotelial Vascular
10.
Nat Biomed Eng ; 5(7): 666-677, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031558

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 µl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.


Asunto(s)
Técnicas Biosensibles/métodos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Nanotecnología/métodos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , COVID-19/virología , Humanos , Anticuerpos de Dominio Único/inmunología
11.
Biomed Microdevices ; 23(1): 2, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33386434

RESUMEN

This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm-1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.


Asunto(s)
Nanopartículas del Metal , Supervivencia Celular , Electrodos , Polímeros/toxicidad , Plata/toxicidad , Xilenos
12.
Macromol Biosci ; 20(11): e2000215, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32820588

RESUMEN

The development of electronics adept at interfacing with the nervous system is an ever-growing effort, leading to discoveries in fundamental neuroscience applied in clinical setting. Highly capacitive and electrochemically stable electronic materials are paramount for these advances. A systematic study is presented where copolymers based on 3,4-ethylenedioxythiophene (EDOT) and its hydroxyl-terminated counterpart (EDOTOH) are electropolymerized in an aqueous solution in the presence of various counter anions and additives. Amongst the conducting materials developed, the copolymer p(EDOT-ran-EDOTOH) doped with perchlorate in the presence of ethylene glycol shows high specific capacitance (105 F g-1 ), and capacitance retention (85%) over 1000 galvanostatic charge-discharge cycles. A microelectrode array-based on this material is fabricated and primary cortical neurons are cultured therein for several days. The microelectrodes electrically stimulate targeted neuronal networks and record their activity with high signal-to-noise ratio. The stability of charge injection capacity of the material is validated via long-term pulsing experiments. While providing insights on the effect of additives and dopants on the electrochemical performance and operational stability of electropolymerized conducting polymers, this study highlights the importance of high capacitance accompanied with stability to achieve high performance electrodes for biological interfacing.


Asunto(s)
Benchmarking , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Neuronas/fisiología , Polimerizacion , Polímeros/química , Electroquímica , Electrodos
13.
ACS Appl Bio Mater ; 1(5): 1348-1354, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996238

RESUMEN

Conjugated polymers are promising engineering tools for establishing bilateral electrical communication with living systems. The free energy of their films, the roughness, and charge density play major roles in determining their interactions with lipid bilayers, which form the membrane barrier around every living cell allowing for molecular exchange with the extracellular environment. In this work, we investigate lipid bilayer formation from synthetic lipid vesicles (liposomes) on a series of amphiphilic copolymer films based on naphthalene 1,4,5,8 tetracarboxylic diimide bithiophene (NDI-T2) backbone where the alkyl side chain is gradually exchanged for an ethylene glycol-based side chain. As the concentration of ethylene glycol in the composition changes, the surface energy of the films varies drastically, which, in turn, effects the interactions with liposomes. By imaging the interactions of fluorophore-labeled liposomes with these surfaces via a fluorescence microscope, we show that the films can be cast such that ethylene glycol-rich regions, which liposomes favor, are accumulated on the surface and extract information on the wettability behavior that has not been possible using other surface sensitive techniques. This approach uncovers the solid/liquid interface of a promising class of electron transporting conjugated polymer films and suggests synthetic strategies to maximize the number of lipid-polymer contacts for the formation of supported lipid bilayers.

14.
ACS Appl Mater Interfaces ; 9(12): 10427-10434, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28263552

RESUMEN

Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.


Asunto(s)
Polielectrolitos/química , Sistemas de Liberación de Medicamentos , Electrodos
15.
J Crohns Colitis ; 11(8): 999-1010, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333335

RESUMEN

BACKGROUND AND AIMS: Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. METHODS: We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. RESULTS: We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. CONCLUSION: These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability.


Asunto(s)
Cadherinas/metabolismo , Mucosa Intestinal/metabolismo , Saccharomyces boulardii , Línea Celular , Permeabilidad de la Membrana Celular , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía por Video , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Microsyst Nanoeng ; 3: 17028, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31057869

RESUMEN

Future drug discovery and toxicology testing could benefit significantly from more predictive and multi-parametric readouts from in vitro models. Despite the recent advances in the field of microfluidics, and more recently organ-on-a-chip technology, there is still a high demand for real-time monitoring systems that can be readily embedded with microfluidics. In addition, multi-parametric monitoring is essential to improve the predictive quality of the data used to inform clinical studies that follow. Here we present a microfluidic platform integrated with in-line electronic sensors based on the organic electrochemical transistor. Our goals are two-fold, first to generate a platform to host cells in a more physiologically relevant environment (using physiologically relevant fluid shear stress (FSS)) and second to show efficient integration of multiple different methods for assessing cell morphology, differentiation, and integrity. These include optical imaging, impedance monitoring, metabolite sensing, and a wound-healing assay. We illustrate the versatility of this multi-parametric monitoring in giving us increased confidence to validate the improved differentiation of cells toward a physiological profile under FSS, thus yielding more accurate data when used to assess the effect of drugs or toxins. Overall, this platform will enable high-content screening for in vitro drug discovery and toxicology testing and bridges the existing gap in the integration of in-line sensors in microfluidic devices.

17.
Adv Healthc Mater ; 5(24): 3094-3098, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27885829

RESUMEN

Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química , Poliestirenos/química , Electrofisiología/métodos , Escherichia coli/química , Escherichia coli/crecimiento & desarrollo , Esterilización/métodos
18.
Nanotechnology ; 27(7): 074001, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26790487

RESUMEN

We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm(2) ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] ( PEDOT: PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).

19.
Sci Rep ; 5: 11613, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26112429

RESUMEN

Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the "tightness" of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity.


Asunto(s)
Técnicas Electroquímicas/métodos , Fenómenos Electrofisiológicos/fisiología , Polímeros/química , Transistores Electrónicos , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Perros , Impedancia Eléctrica , Electricidad , Técnicas Electroquímicas/instrumentación , Electrodos , Células de Riñón Canino Madin Darby , Ruido , Reproducibilidad de los Resultados , Factores de Tiempo
20.
Chemphyschem ; 16(6): 1210-6, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25752503

RESUMEN

The organic electrochemical transistor (OECT) is a unique device that shows great promise for sensing in biomedical applications such as monitoring of the integrity of epithelial tissue. It is a label-free sensor that is amenable to low-cost production by roll-to-roll or other printing technologies. Herein, the optimization of a planar OECT for the characterization of barrier tissue is presented. Evaluation of surface coating, gate biocompatibility and performance, and optimization of the geometry of the transistor are highlighted. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), which is used as the active material in the transistor, has the added advantage of allowing significant light transmission compared to traditional electrode materials and thus permits high-quality optical microscopy. The combination of optical and electronic monitoring of cells shown herein provides the opportunity to couple two very complementary techniques to yield a low-cost method for in vitro cell sensing.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Técnicas Electroquímicas , Células Epiteliales/química , Polímeros/química , Poliestirenos/química , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Perros , Electrodos , Células Epiteliales/metabolismo , Células de Riñón Canino Madin Darby , Polímeros/metabolismo , Poliestirenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...