Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22279558

RESUMEN

BackgroundT cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Methods48 participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established Protective Immunity from T Cells in Healthcare workers (PITCH) ELISpot, which can evaluate spike-specific T cell responses. AimsThe primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared to the PITCH ELISpot. FindingsThe QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naive individuals (p< 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (55.5%) compared to the PITCH ELISpot (66.6%). ConclusionThe QuantiFERON SARS-CoV-2 assay showed potential as a T cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection. Graphical abstractWith the exception of acute infection group, the PITCH ELISpot S1+S2 had greater sensitivity for SARS-CoV-2 specific T cell responses compared with the QuantiFERON SARS-CoV-2 assay tube Ag3. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=64 SRC="FIGDIR/small/22279558v1_ufig1.gif" ALT="Figure 1"> View larger version (13K): org.highwire.dtl.DTLVardef@1913a88org.highwire.dtl.DTLVardef@199b88corg.highwire.dtl.DTLVardef@12309cborg.highwire.dtl.DTLVardef@15807a0_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22275865

RESUMEN

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474030

RESUMEN

The mutational landscape of SARS-CoV-2 varies at both the dominant viral genome sequence and minor genomic variant population. An early change associated with transmissibility was the D614G substitution in the spike protein. This appeared to be accompanied by a P323L substitution in the viral polymerase (NSP12), but this latter change was not under strong selective pressure. Investigation of P323L/D614G changes in the human population showed rapid emergence during the containment phase and early surge phase of wave 1 in the UK. This rapid substitution was from minor genomic variants to become part of the dominant viral genome sequence. A rapid emergence of 323L but not 614G was observed in a non-human primate model of COVID-19 using a starting virus with P323 and D614 in the dominant genome sequence and 323L and 614G in the minor variant population. In cell culture, a recombinant virus with 323L in NSP12 had a larger plaque size than the same recombinant virus with P323. These data suggest that it may be possible to predict the emergence of a new variant based on tracking the distribution and frequency of minor variant genomes at a population level, rather than just focusing on providing information on the dominant viral genome sequence e.g., consensus level reporting. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264207

RESUMEN

Duration of protection from SARS-CoV-2 infection in people with HIV (PWH) following vaccination is unclear. In a sub-study of the phase 2/3 the COV002 trial (NCT04400838), 54 HIV positive male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells >350 cells/ul) received two doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and MesoScale Discovery (MSD)), neutralisation, ACE-2 inhibition, gamma interferon ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that 6 months after vaccination the majority of measurable immune responses were greater than pre-vaccination baseline, but with evidence of a decline in both humoral and cell mediated immunity. There was, however, no significant difference compared to a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although were lower than wild type. Pre-existing cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater post-vaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the on-going policy to vaccinate PWH against SARS-CoV-2, and underpin the need for long-term monitoring of responses after vaccination.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256571

RESUMEN

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-437704

RESUMEN

New variants of SARS-CoV-2 are continuing to emerge and dominate the regional and global sequence landscapes. Several variants have been labelled as Variants of Concern (VOCs) because of perceptions or evidence that these may have a transmission advantage, increased risk of morbidly and/or mortality or immune evasion in the context of prior infection or vaccination. Placing the VOCs in context and also the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Sequences of SARS-CoV-2 in nasopharyngeal swabs from hospitalised patients in the UK were determined and virus isolated. The data indicated the virus existed as a population with a consensus level and non-synonymous changes at a minor variant. For example, viruses containing the nsp12 P323L variation from the Wuhan reference sequence, contained minor variants at the position including P and F and other amino acids. These populations were generally preserved when isolates were amplified in cell culture. In order to place VOCs B.1.1.7 (the UK Kent variant) and B.1.351 (the South African variant) in context their growth was compared to a spread of other clinical isolates. The data indicated that the growth in cell culture of the B.1.1.7 VOC was no different from other variants, suggesting that its apparent transmission advantage was not down to replicating more quickly. Growth of B.1.351 was towards the higher end of the variants. Overall, the study suggested that studying the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. ImportanceSARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genetic material (genomes) can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less ineffective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By isolating viruses from these patients, we show that there is a 100-fold range in growth of even normal variants. Interestingly, by comparing this to the pattern seen with two Variants of Concern (UK and South African variants), we show that at least in cells the ability of the B.1.1.7 variant to grow is not substantially different to many of the previous variants.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-423746

RESUMEN

There is an urgent requirement for safe and effective vaccines to prevent novel coronavirus disease (COVID-19) caused by SARS-CoV-2. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferret and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine in ferrets or unvaccinated macaques. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen at seven days post infection in ferrets. This increased lung pathology was observed early in the infection (day 7) but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-275701

RESUMEN

There is dire need for an effective and affordable vaccine against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a modular virus-like particle vaccine candidate displaying the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) using SpyTag/SpyCatcher technology (RBD-SpyVLP). Low doses of RBD-SpyVLP in a prime-boost regimen induced a strong neutralising antibody response in mice and pigs that was superior to convalescent human sera. We evaluated antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we showed that RBD-SpyVLP induced a polyclonal antibody response that recognised all key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. The induction of potent and polyclonal antibody responses by RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic. Moreover, RBD-SpyVLP is highly resilient, thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-159715

RESUMEN

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-079202

RESUMEN

There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 [A] of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding would facilitate conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment. HighlightsO_LICR3022 neutralises SARS-CoV-2 C_LIO_LINeutralisation is by destroying the prefusion SPIKE conformation C_LIO_LIThis antibody may have therapeutic potential alone or with one blocking receptor attachment C_LI

11.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20105486

RESUMEN

BackgroundLaboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. MethodsWe undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=111 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. ResultsWe identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected [≥]28 days post symptom onset, 0/143 (0%, 95%CI 0.0-2.5%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. ConclusionsvRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

12.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20066407

RESUMEN

BackgroundThe COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. MethodsWe tested plasma for COVID (SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). ResultsELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested [≥]10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. ConclusionsCurrently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...