Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2314031, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509794

RESUMEN

Electrocatalytic water splitting is crucial to generate clean hydrogen fuel, but implementation at an industrial scale remains limited due to dependence on expensive platinum (Pt)-based electrocatalysts. Here, an all-dry process to transform electrochemically inert bulk WS2 into a multidomain electrochemical catalyst that enables scalable and cost-effective implementation of the hydrogen evolution reaction (HER) in water electrolysis is reported. Direct dry transfer of WS2 flakes to a gold thin film deposited on a silicon substrate provides a general platform to produce the working electrodes for HER with tunable charge transfer resistance. By treating the mechanically exfoliated WS2 with sequential Ar-O2 plasma, mixed domains of WS2, WO3, and tungsten oxysulfide form on the surfaces of the flakes, which gives rise to a superior HER with much greater long-term stability and steady-state activity compared to Pt. Using density functional theory, ultraefficient atomic sites formed on the constituent nanodomains are identified, and the quantification of atomic-scale reactivities and resulting HER activities fully support the experimental observations.

2.
Small Methods ; : e2301185, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189565

RESUMEN

Amorphous IGZO (a-IGZO) thin-film transistors (TFTs) are standard backplane electronics to power active-matrix organic light-emitting diode (AMOLED) televisions due to their high carrier mobility and negligible low leakage characteristics. Despite their advantages, limitations in color depth arise from a steep subthreshold swing (SS) (≤ 0.1 V/decade), necessitating costly external compensation for IGZO transistors. For mid-size mobile applications such as OLED tablets and notebooks, it is important to ensure controllable SS value (≥ 0.3 V/decade). In this study, a conversion mechanism during plasma-enhanced atomic layer deposition (PEALD) is proposed as a feasible route to control the SS. When a pulse of a diethylzinc (DEZn) precursor is exposed to the M2 O3 (M = In or Ga) surface layer, partial conversion of the underlying M2 O3 to ZnO is predicted on the basis of density function theory calculations. Notably, significant distinctions between In-Ga-Zn (Case I) and In-Zn-Ga (Case II) films are observed: Case II exhibits a lower growth rate and larger Ga/In ratio. Case II TFTs with a-IGZO (subcycle ratio of In:Ga:Zn = 3:1:1) show reasonable SS values (313 mV decade-1 ) and high mobility (µFE ) of 29.3 cm2 Vs-1 (Case I: 84 mV decade-1 and 33.4 cm2 Vs-1 ). The rationale for Case II's reasonable SS values is discussed, attributing it to the plausible formation of In-Zn defects, supported by technology computer-aided design (TCAD) simulations.

3.
J Mol Model ; 30(1): 10, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093140

RESUMEN

CONTEXT: Area-selective atomic layer deposition (AS-ALD) is a thin film deposition technique developed using conventional ALD by considering the surface chemical nature of the substrate. Selecting appropriate precursors is a critical step in developing an efficient AS-ALD process with high deposition selectivity. However, the current efficiency of research on viable AS-ALD precursors is limited because of the absence of theoretical design rules for precursor chemical structures. In this study, our objective is to propose molecular design principle for precursors for AS-ALD, particularly focusing on achieving high deposition selectivity of oxides on diverse substrates. Current preliminary results suggest that ML-based prediction model may provide a fundamental molecular-level understanding of the reactivity of metal oxide precursors, that can be useful for efficient selection of suitable precursors for AS-ALD. METHODS: We employ density functional theory (DFT) calculations and machine learning (ML) techniques to analyze the relationship between the structure and the surface reactivity of the precursor. Considering DFT calculation data (M06L/def2-tzvp, Gaussian 09 and Orca 4.0) and information on precursor structures, artificial neural networks (ANN, neuralnet, R) are applied to identify critical descriptors of the AS-ALD process. Furthermore, we utilize this ANN model to predict precursor reactivity according to surface terminations.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37877895

RESUMEN

Indium oxide (In2O3) is a transparent wide-bandgap semiconductor suitable for use in the back-end-of-line-compatible channel layers of heterogeneous monolithic three-dimensional (M3D) devices. The structural, chemical, and electrical properties of In2O3 films deposited by plasma-enhanced atomic layer deposition (PEALD) were examined using two different liquid-based precursors: (3-(dimethylamino)propyl)-dimethyl indium (DADI) and (N,N-dimethylbutylamine)trimethylindium (DATI). DATI-derived In2O3 films had higher growth per cycle (GPC), superior crystallinity, and low defect density compared with DADI-derived In2O3 films. Density functional theory calculations revealed that the structure of DATI can exhibit less steric hindrance compared with that of DADI, explaining the superior physical and electrical properties of the DATI-derived In2O3 film. DATI-derived In2O3 field-effect transistors (FETs) exhibited unprecedented performance, showcasing a high field-effect mobility of 115.8 cm2/(V s), a threshold voltage of -0.12 V, and a low subthreshold gate swing value of <70 mV/decade. These results were achieved by employing a 10-nm-thick HfO2 gate dielectric layer with an effective oxide thickness of 3.9 nm. Both DADI and DATI-derived In2O3 FET devices exhibited remarkable stability under bias stress conditions due to a high-quality In2O3 channel layer, good gate dielectric/channel interface matching, and a suitable passivation layer. These findings underscore the potential of ALD In2O3 films as promising materials for upper-layer channels in the next generation of M3D devices.

5.
Nat Nanotechnol ; 18(12): 1439-1447, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37500777

RESUMEN

Recent advances in two-dimensional semiconductors, particularly molybdenum disulfide (MoS2), have enabled the fabrication of flexible electronic devices with outstanding mechanical flexibility. Previous approaches typically involved the synthesis of MoS2 on a rigid substrate at a high temperature followed by the transfer to a flexible substrate onto which the device is fabricated. A recurring drawback with this methodology is the fact that flexible substrates have a lower melting temperature than the MoS2 growth process, and that the transfer process degrades the electronic properties of MoS2. Here we report a strategy for directly synthesizing high-quality and high-crystallinity MoS2 monolayers on polymers and ultrathin glass substrates (thickness ~30 µm) at ~150 °C using metal-organic chemical vapour deposition. By avoiding the transfer process, the MoS2 quality is preserved. On flexible field-effect transistors, we achieve a mobility of 9.1 cm2 V-1 s-1 and a positive threshold voltage of +5 V, which is essential for reducing device power consumption. Moreover, under bending conditions, our logic circuits exhibit stable operation while phototransistors can detect light over a wide range of wavelengths from 405 nm to 904 nm.

6.
ACS Nano ; 17(16): 15776-15786, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37432767

RESUMEN

Scalable production and integration techniques for van der Waals (vdW) layered materials are vital for their implementation in next-generation nanoelectronics. Among available approaches, perhaps the most well-received is atomic layer deposition (ALD) due to its self-limiting layer-by-layer growth mode. However, ALD-grown vdW materials generally require high processing temperatures and/or additional postdeposition annealing steps for crystallization. Also, the collection of ALD-producible vdW materials is rather limited by the lack of a material-specific tailored process design. Here, we report the annealing-free wafer-scale growth of monoelemental vdW tellurium (Te) thin films using a rationally designed ALD process at temperatures as low as 50 °C. They exhibit exceptional homogeneity/crystallinity, precise layer controllability, and 100% step coverage, all of which are enabled by introducing a dual-function co-reactant and adopting a so-called repeating dosing technique. Electronically, vdW-coupled and mixed-dimensional vertical p-n heterojunctions with MoS2 and n-Si, respectively, are demonstrated with well-defined current rectification as well as spatial uniformity. Additionally, we showcase an ALD-Te-based threshold switching selector with fast switching time (∼40 ns), selectivity (∼104), and low Vth (∼1.3 V). This synthetic strategy allows the low-thermal-budget production of vdW semiconducting materials in a scalable fashion, thereby providing a promising approach for monolithic integration into arbitrary 3D device architectures.

8.
Nat Commun ; 13(1): 7597, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494441

RESUMEN

The integration of bottom-up fabrication techniques and top-down methods can overcome current limits in nanofabrication. For such integration, we propose a gradient area-selective deposition using atomic layer deposition to overcome the inherent limitation of 3D nanofabrication and demonstrate the applicability of the proposed method toward large-scale production of materials. Cp(CH3)5Ti(OMe)3 is used as a molecular surface inhibitor to prevent the growth of TiO2 film in the next atomic layer deposition process. Cp(CH3)5Ti(OMe)3 adsorption was controlled gradually in a 3D nanoscale hole to achieve gradient TiO2 growth. This resulted in the formation of perfectly seamless TiO2 films with a high-aspect-ratio hole structure. The experimental results were consistent with theoretical calculations based on density functional theory, Monte Carlo simulation, and the Johnson-Mehl-Avrami-Kolmogorov model. Since the gradient area-selective deposition TiO2 film formation is based on the fundamentals of molecular chemical and physical behaviours, this approach can be applied to other material systems in atomic layer deposition.

9.
Small ; 18(10): e2105916, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35018707

RESUMEN

2D crystals can serve as templates for the realization of new van der Waals (vdW) heterostructures via controlled assembly of low-dimensional functional components. Among available 2D crystals, black phosphorus (BP) is unique due to its puckered atomic surface topography, which may lead to strong epitaxial phenomena through guided vdW assembly. Here, it is demonstrated that a BP template can induce highly oriented assembly of C60 molecular crystals. Transmission electron microscopy and theoretical analysis of the C60 /BP vdW heterostructure clearly confirm that the BP template results in oriented C60 assembly with higher-order commensurism. Lateral and vertical devices with C60 /BP junctions are fabricated via a lithography-free clean process, which allows one to investigate the ideal electrical properties of pristine C60 /BP junctions. Effective tuning of the C60 /BP junction barrier from 0.2 to 0.5 eV and maximum on-current density higher than 104  mA cm-2 are achieved with graphite/C60 /BP vertical vdW transistors. Due to the formation of high-quality C60 film and the semitransparent graphite top-electrode, the vertical transistors show high photoresponsivities up to ≈100 A W-1 as well as a fast response time under visible light illumination.

10.
Dalton Trans ; 50(48): 17935-17944, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34821888

RESUMEN

Atomic layer deposition (ALD) is a thin film deposition technique based on self-saturated reactions between a precursor and reactant vacuum conditions. A typical ALD reaction consists of the first half-reaction of the precursor and the second half-reaction of the counter reactant, in which the terminal groups on the surface change after each half-reaction. In this study, the effects of counter reactants on the surface termination and growth characteristics of ALD HfO2 thin films formed on Si substrates using tetrakis(dimethylamino)-hafnium (TDMAH) as a precursor were investigated. Two counter reactants, H2O and O3, were individually employed, as well as in combination with consecutive exposure by H2O-O3 and O3-H2O. The film growth behaviors and properties differed when the sequence of exposure of the substrate to the reactants was varied. Based on X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) simulation, the changes are attributed to the effects of the surface terminations formed from different counter reactant combinations. The knowledge from this work could provide insight for precisely tuning the growth and properties of ALD films.

11.
ACS Appl Mater Interfaces ; 13(33): 40134-40144, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34396768

RESUMEN

Atomic layer deposition (ALD) has attracted much attention, particularly for applications in nanoelectronics because of its atomic-level controllability and high-quality products. In this study, we developed a plasma-enhanced atomic layer deposition (PEALD) process to fabricate a homogeneous indium aluminum oxide (IAO) semiconductor film. Trimethylaluminum (TMA) and dimethylaluminum isopropoxide (DMAI) were used as Al precursors, which yielded different compositions. Density functional theory (DFT) calculations on the surface reactions between indium and aluminum precursors showed that while highly reactive TMA would etch In, DMAI with lower reactivity would allow indium to persist in the films, resulting in a more controlled doping of Al. The In/Al composition ratio could be further precisely controlled by adjusting the indium precursor dose time to sub-saturation. IAO based on DMAI was applied to fabricate thin-film transistors (TFTs), showing that Al can be a carrier suppressor of indium oxide. TFTs with PEALD IAO containing 3.8 atomic % Al showed a turn-on voltage of -0.4 ± 0.3 V, a subthreshold slope of 0.09 V/decade, and a field effect mobility of 18.9 cm2/(V s).

12.
ACS Appl Mater Interfaces ; 12(38): 43212-43221, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32841556

RESUMEN

Area-selective atomic layer deposition (AS-ALD) is a promising technique for fine nanoscale patterning, which may overcome the drawbacks of conventional top-down approaches for the fabrication of future electronic devices. However, conventional materials and processes often employed for AS-ALD are inadequate for conformal and rapid processing. We introduce a new strategy for AS-ALD based on molecular layer deposition (MLD) that is compatible with large-scale manufacturing. Conformal thin films of "indicone" (indium alkoxide polymer) are fabricated by MLD using INCA-1 (bis(trimethylsily)amidodiethylindium) and HQ (hydroquinone). Then, the MLD indicone films are annealed by a thermal heat treatment under vacuum. The properties of the indicone thin films with different annealing temperatures were measured with multiple optical, physical, and chemical techniques. Interestingly, a nearly complete removal of indium from the film was observed upon annealing to ca. 450 °C and above. The chemical mechanism of the thermal transformation of the indicone film was investigated by density functional theory calculations. Then, the annealed indicone thin films were applied as an inhibiting layer for the subsequent ALD of ZnO, where the deposition of approximately 20 ALD cycles (equivalent to a thickness of approximately 4 nm) of ZnO was successfully inhibited. Finally, patterns of annealed MLD indicone/Si substrates were created on which the area-selective deposition of ZnO was demonstrated.

13.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580390

RESUMEN

Due to their atomic thicknesses and semiconducting properties, two-dimensional transition metal dichalcogenides (TMDCs) are gaining increasing research interest. Among them, Hf- and Zr-based TMDCs demonstrate the unique advantage that their oxides (HfO2 and ZrO2) are excellent dielectric materials. One possible method to precisely tune the material properties of two-dimensional atomically thin nanomaterials is to adsorb molecules on their surfaces as non-bonded dopants. In the present work, the molecular adsorption of NO2 and NH3 on the two-dimensional trigonal prismatic (1H) and octahedral (1T) phases of Hf and Zr dichalcogenides (S, Se, Te) is studied using dispersion-corrected periodic density functional theory (DFT) calculations. The adsorption configuration, energy, and charge-transfer properties during molecular adsorption are investigated. In addition, the effects of the molecular dopants (NH3 and NO2) on the electronic structure of the materials are studied. It was observed that the adsorbed NH3 donates electrons to the conduction band of the Hf (Zr) dichalcogenides, while NO2 receives electrons from the valance band. Furthermore, the NO2 dopant affects than NH3 significantly. The resulting band structure of the molecularly doped Zr and Hf dichalcogenides are modulated by the molecular adsorbates. This study explores, not only the properties of the two-dimensional 1H and 1T phases of Hf and Zr dichalcogenides (S, Se, Te), but also tunes their electronic properties by adsorbing non-bonded dopants.

14.
ACS Nano ; 14(2): 1757-1769, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31967453

RESUMEN

We introduce the synthesis of hybrid nanostructures comprised of ZnO nanocrystals (NCs) decorating nanosheets and nanowires (NWs) of MoS2 prepared by atomic layer deposition (ALD). The concentration, size, and surface-to-volume ratio of the ZnO NCs can be systematically engineered by controlling both the number of ZnO ALD cycles and the properties of the MoS2 substrates, which are prepared by sulfurizing ALD MoO3. Analysis of the chemical composition combined with electron microscopy and synchrotron X-ray techniques as a function of the number of ZnO ALD cycles, together with the results of quantum chemical calculations, help elucidate the ZnO growth mechanism and its dependence on the properties of the MoS2 substrate. The defect density and grain size of MoS2 nanosheets are controlled by the sulfurization temperature of ALD MoO3, and the ZnO NCs in turn nucleate selectively at defect sites on MoS2 surface and enlarge with increasing ALD cycle numbers. At higher ALD cycle numbers, the coalescence of ZnO NCs contributes to an increase in areal coverage and NC size. Additionally, the geometry of the hybrid structures can be tuned by changing the dimensionality of the MoS2, by employing vertical NWs of MoS2 as the substrate for ALD ZnO NCs, which leads to improvement of the relevant surface-to-volume ratio. Such materials are expected to find use in newly expanded applications, especially those such as sensors or photodevices based on a p-n heterojunction which relies on coupling transition-metal dichalcogenides with NCs.

15.
ACS Nano ; 14(1): 676-687, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31927973

RESUMEN

Fine-tuning of the surface free energy (SFE) of a solid material facilitates its use in a wide range of applications requiring precise control of the ubiquitous presence of liquid on the surface. In this study, we found that the SFE of rare-earth oxide (REO) thin films deposited by atomic layer deposition (ALD) gradually decreased with increasing film thickness; however, these changes could not be understood by classical interaction models. Herein, the mechanism underlying the aforesaid decrease was systematically studied by measuring contact angles, surface potential, adhesion force, crystalline structures, chemical compositions, and morphologies of the REO films. A growth mode of the REO films was observed: layer-by-layer growth at the initial stage with an amorphous phase and subsequent crystalline island growth, accompanied by a change in the crystalline structure and orientation that affects the SFE. The portion of the surface crystalline facets terminated with (222) and (440) planes evolved with an increase in ALD cycles and film thickness, as an amorphous phase was transformed. Based on this information, we demonstrated an SFE-tuned liquid tweezer with selectivity to target liquid droplets. We believe that the results of this fundamental and practical study, with excellent selectivity to liquids, will have significant impacts on coating technology.

16.
ACS Appl Mater Interfaces ; 11(46): 43608-43621, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633331

RESUMEN

We present an atomic layer deposition (ALD) process for the synthesis of tin nitride (SnNx) thin films using tetrakis(dimethylamino) tin (TDMASn, Sn(NMe2)4) and ammonia (NH3) as the precursors at low deposition temperatures (70-200 °C). This newly developed ALD scheme exhibits ideal ALD features such as self-limited film growth at 150 °C. The growth per cycle (GPC) was found to be ∼0.21 nm/cycle at 70 °C, which decreased with increasing deposition temperature. Interestingly, when the deposition temperature was between 125 and 180 °C, the GPC remained almost constant at ∼0.10 nm/cycle, which suggests an ALD temperature window, whereas upon further increasing the temperature to 200 °C, the GPC considerably decreased to ∼0.04 nm/cycle. Thermodynamic analysis via density functional theory calculations showed that the self-saturation of TDMASn would occur on an NH2-terminated surface. Moreover, it also suggests that the condensation of a molecular precursor and the desorption of surface *NH2 moieties would occur at lower and higher temperatures outside the ALD window, respectively. Thanks to the characteristics of ALD, this process could be used to conformally and uniformly deposit SnNx onto an ultranarrow dual-trench Si structure (minimum width: 15 nm; aspect ratio: ∼6.3) with ∼100% step coverage. Several analysis tools such as transmission electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and secondary-ion mass spectrometry were used to characterize the film properties under different deposition conditions. XRD showed that a hexagonal SnN phase was obtained at a relatively low deposition temperature (100-150 °C), whereas cubic Sn3N4 was formed at a higher deposition temperature (175-200 °C). The stoichiometry of these thermally grown ALD-SnNx films (Sn-to-N ratio) deposited at 150 °C was determined to be ∼1:0.93 with negligible impurities. The optoelectronic properties of the SnNx films, such as the band gap, wavelength-dependent refractive index, extinction coefficient, carrier concentration, and mobility, were further evaluated via spectroscopic ellipsometry analysis. Finally, ALD-SnNx-coated Ni-foam (NF) and hollow carbon nanofibers were successfully used as free-standing electrodes in electrochemical supercapacitors and in Li-ion batteries, which showed a higher charge-storage time (about eight times greater than that of the uncoated NF) and a specific capacity of ∼520 mAh/g after 100 cycles at 0.1 A/g, respectively. This enhanced performance might be due to the uniform coverage of these substrates by ALD-SnNx, which ensures good electric contact and mechanical stability during electrochemical reactions.

17.
J Am Chem Soc ; 139(25): 8758-8765, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28560877

RESUMEN

Reactions of the (100) surfaces of Ge and Si with organic molecules have been generally understood within the concept of "dimers" formed by the 2 × 1 surface reconstruction. In this work, the adsorption of tert-butyl isocyanide on the Ge(100)-2 × 1 surface at large exposures is investigated under ultrahigh vacuum conditions. A combination of infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption experiments along with dispersion-corrected density functional theory calculations is used to determine the surface products. Upon adsorption of a dense monolayer of tert-butyl isocyanide, a product whose structure resembles a germa-ketenimine (N=C=Ge) with σ donation toward and π back-donation from the Ge(100) surface appears. Formation of this structure involves divalent-type surface Ge atoms that arise from cleavage of the Ge(100)-2 × 1 surface dimers. Our results reveal an unprecedented class of reactions of organic molecules at the Ge(100) surface.

18.
ACS Appl Mater Interfaces ; 9(28): 23934-23940, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28644010

RESUMEN

Indium gallium oxide (IGO) thin films were deposited via atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (InCA-1) and trimethylgallium (TMGa) as indium and gallium precursors, respectively, and hydrogen peroxide as the reactant. To clearly understand the mechanism of multicomponent ALD growth of oxide semiconductor materials, several variations in the precursor-reactant deposition cycles were evaluated. Gallium could be doped into the oxide film at 200 °C when accompanied by an InCA-1 pulse, and no growth of gallium oxide was observed without the simultaneous deposition of indium oxide. Density functional theory calculations for the initial adsorption of the precursors revealed that chemisorption of TMGa was kinetically hindered on hydroxylated SiOx but was spontaneous on a hydroxylated InOx surface. Moreover, the atomic composition and electrical characteristics, such as carrier concentration and resistivity, of the ALD-IGO film were controllable by adjusting the deposition supercycles, composed of InO and GaO subcycles. Thus, ALD-IGO could be employed to fabricate active layers for thin-film transistors to realize an optimum mobility of 9.45 cm2/(V s), a threshold voltage of -1.57 V, and a subthreshold slope of 0.26 V/decade.

19.
Nanotechnology ; 28(11): 115301, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28106007

RESUMEN

One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

20.
Nat Commun ; 7: 13139, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731407

RESUMEN

Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au-Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...