Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.716
Filtrer
1.
Soft Matter ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39087847

RÉSUMÉ

The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.

2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-39000247

RÉSUMÉ

Fos-related antigen-2 (Fra-2) is a member of the activating protein-1 (AP-1) family of transcription factors. It is involved in controlling cell growth and differentiation by regulating the production of the extracellular matrix (ECM) and coordinating the balance of signals within and outside the cell. Fra-2 is not only closely related to bone development, metabolism, and immune system and eye development but also in the progression of respiratory conditions like lung tumors, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). The increased expression and activation of Fra-2 in various lung diseases has been shown in several studies. However, the specific molecular mechanisms through which Fra-2 affects the development of respiratory diseases are not yet understood. The purpose of this research is to summarize and delineate advancements in the study of the involvement of transcription factor Fra-2 in disorders related to the respiratory system.


Sujet(s)
Antigène-2 apparenté à fos , Humains , Antigène-2 apparenté à fos/métabolisme , Antigène-2 apparenté à fos/génétique , Animaux , Maladies de l'appareil respiratoire/métabolisme , Maladies de l'appareil respiratoire/étiologie , Broncho-pneumopathie chronique obstructive/métabolisme , Broncho-pneumopathie chronique obstructive/anatomopathologie , Broncho-pneumopathie chronique obstructive/génétique , Asthme/métabolisme , Asthme/anatomopathologie
3.
Adv Mater ; : e2405664, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39049808

RÉSUMÉ

Over the last decade, carbon-based metal-free electrocatalysts (C-MFECs) have become important in electrocatalysis. This field is started thanks to the initial discovery that nitrogen atom doped carbon can function as a metal-free electrode in alkaline fuel cells. A wide variety of metal-free carbon nanomaterials, including 0D carbon dots, 1D carbon nanotubes, 2D graphene, and 3D porous carbons, has demonstrated high electrocatalytic performance across a variety of applications. These include clean energy generation and storage, green chemistry, and environmental remediation. The wide applicability of C-MFECs is facilitated by effective synthetic approaches, e.g., heteroatom doping, and physical/chemical modification. These methods enable the creation of catalysts with electrocatalytic properties useful for sustainable energy transformation and storage (e.g., fuel cells, Zn-air batteries, Li-O2 batteries, dye-sensitized solar cells), green chemical production (e.g., H2O2, NH3, and urea), and environmental remediation (e.g., wastewater treatment, and CO2 conversion). Furthermore, significant advances in the theoretical study of C-MFECs via advanced computational modeling and machine learning techniques have been achieved, revealing the charge transfer mechanism for rational design and development of highly efficient catalysts. This review offers a timely overview of recent progress in the development of C-MFECs, addressing material syntheses, theoretical advances, potential applications, challenges and future directions.

4.
Int J Biol Macromol ; 276(Pt 2): 134002, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39032909

RÉSUMÉ

Cellulose-based fabrics have significant advantages, but their application scenarios are limited due to their flammability. This work used biomass phytic acid and protein decomposition products, alkaline amino acids (arginine, lysine, histidine) to prepare alkaline amino acid flame retardants (PALA, PALL, PALH), and they were utilized to endow Lyocell fabrics with flame-retardant and antibacterial properties. When the weight gain was about 16.0 wt%, PALA exhibited better flame-retardant effect, and the limited oxygen index value of PALA-Lyocell reached 47.1 %. In the cone calorimetry test, PALA showed the best flame-retardant efficiency in reducing flame growth index with a 92.0 % decrease in peak heat release rate. The results of thermogravimetric analysis coupled with Fourier Transform Infrared spectroscopy (TG-FTIR) and char residues indicated that the flame-retardant property of alkaline amino acid flame retardants was formed through the combined action of gas and condensed phases. In the antibacterial test, PALA had the highest antibacterial rate against Staphylococcus aureus at 97.2 %. Mechanical property, handle feeling, and whiteness results had indicated that alkaline amino acid based flame retardants had little effect on the physical properties of Lyocell fabrics. This work confirms alkaline amino acid based flame retardants have functions of flame-retardant and antibacterial properties, providing reference for the practical value of biomass in cellulose-based fabrics.

5.
Heliyon ; 10(13): e33770, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39040317

RÉSUMÉ

Electrospinning is a widely recognized method for producing Janus or core-shell nanofibers. In this study, nanofibrous membranes were fabricated through co-axial electrospinning utilizing polycaprolactone (PCL) and silk fibroin (SF) as the Janus shell, and taxifolin (TAX) and SF as the core. The resulting nanofibers had diameters of 816 ± 161 nm and core diameters of 73 ± 5 nm. The morphology and properties of the PCL-SF@SF/TAX nanofibers were subsequently analyzed. The results demonstrated that the nanofibrous membranes achieved physical and chemical characteristics potential for tissue engineering and drug delivery. Specifically, the membranes exhibited a Young's modulus of 9.64 ± 0.29 MPa, a water contact angle of 79.1 ± 1.3°, and a weight loss of 17.3 ± 1.0 % over a period of 28 days. The incorporation of TAX endowed the membranes with antibacterial properties, effectively combating Escherichia coli and Staphylococcus aureus. Furthermore, the membranes demonstrated antioxidant capabilities, with a DPPH radical scavenging efficiency of 38.5 ± 5.6 % and a Trolox-equivalent antioxidant capacity of 0.24 ± 0.01 mM. The release of the antioxidant was sustained over 28 days, following first-order release kinetics. The nanofibrous membranes, referred to as PSST, exhibit promising potential for use as biomaterials, characterized by their antibacterial activity, antioxidant and cytocompatibility.

6.
J Hazard Mater ; 477: 135260, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39047553

RÉSUMÉ

Biodegradation, while cost-effective, is hindered by the requirement for specialized microorganisms and co-contaminants. Innovative biological technologies like the microbially driven Fenton reaction, hold promise for enhancing degradation efficiency. However, the intricate biochemical processes and essential steps for effective degradation in such systems have remained unclear. In this study, we harnessed the potential of the microbially driven Fenton reaction by employing Shewanella oneidensis MR-1 (MR-1). Our approach showcased remarkable efficacy in degrading a range of contaminants, including sulfadimethoxine (SDM), 4,4'-dibromodiphenyl ether (BDE-15) and atrazine (ATZ). Using SDM as a model contaminant of emergent contaminants (ECs), we unveiled that biodegradation relied on the generation of hydroxyl radicals (•OH) and involvement of oxidoreductases. Transcriptomic analysis shed light on the pivotal components of extracellular electron transfer (EET) during both anaerobic and aerobic periods. The presence of reactive oxidizing species induced cellular damage and impeded DNA repair, thereby affecting the Mtr pathway of EET. Moreover, the formation of vivianite hindered SDM degradation, underscoring the necessity of maintaining iron ions in the solution to ensure sustainable and efficient degradation. Overall, this study offers valuable insights into microbial technique for ECs degradation, providing a comprehensive understanding of degradation mechanisms during aerobic/anaerobic cycling.

7.
Eur J Med Chem ; 276: 116694, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39047607

RÉSUMÉ

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.

8.
Gerontology ; 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39047719

RÉSUMÉ

BACKGROUND: LncRNAs perform a crucial impact on microglia's activation in Parkinson's disease (PD). Here, our purpose is to probe the function and involved mechanism of lncRNA SOX21-AS1 on microglial activation in PD. METHODS: Mice were treated with MPTP, and BV2 cells were treated with LPS/ATP to build PD animal and cell models. Genes' expression was measured using RT-qPCR, immunoblotting, and IHC. ELISA was applied for testing inflammatory factors' levels. Cell viability and apoptosis were tested using kits. RIP and RNA pull-down assay were utilized for monitoring the bond of SOX21-AS1 to EZH2, and ChIP was applied for affirming the bond between EZH2 and SOCS3's promoter. RESULTS: The expression of SOX21-AS1 and SOCS3 was abnormal in PD cell and animal models. Inhibition of SOX21-AS1 repressed LPS/ATP-induced activation in BV2 cells and nerve damage caused by activated BV2 cells, alleviating the pathological features of PD mice. Further studies found that SOX21-AS1 epigenetically inhibited SOCS3 by recruiting EZH2 to SOCS3 promoter. SOX21-AS1 overexpression partially offset the repressive impact of SOCS3 enhancement on BV2 cell activation and the protective effect on nerve cells. CONCLUSION: SOX21-AS1 enhances LPS/ATP-induced activation of BV2 cells and nerve damage caused by activated BV2 cells though recruiting EZH2 to SOCS3's promoter, thereby alleviating PD progression. Our research supplies new potential target for curing PD.

9.
Clin Transl Sci ; 17(2): e13718, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-39052984

RÉSUMÉ

This study aimed to assess the safety, pharmacokinetics, and food impact on sudapyridine (WX-081), a novel drug designed to inhibit mycobacterium ATP synthase, with clinical applications for drug-resistant tuberculosis (TB) treatment. The research comprised two arms: a single ascending dose (SAD) arm (30 to 600 mg, N = 52) and a multiple ascending dose (MAD) arm (200 to 400 mg, N = 30). The influence of food was evaluated using a 400 mg dose within an SAD cohort. Plasma concentrations of WX-081 and M3 (main metabolite of WX-081) were analyzed using a validated liquid-chromatography tandem mass spectrometry method. In the SAD arm, mean residence time (MRT0-t), terminal half-life, and clearance of WX-081 ranged from 18.87 to 52.8 h, 31.39 to 236.57 h, and 6.4 to 80.34 L/h, respectively. The area under the curve from time zero to the last measurable timepoint (AUC0-t) of WX-081 showed dose-proportional increases in the SAD arm. The disparity between fasted and fed states of WX-081 was significant (p < 0.05), with fed dosing resulting in a 984.07% higher AUC0-t and 961.55% higher maximum plasma concentration. In both the SAD and MAD arms, one case each exhibited a 1 degree atrioventricular block. No QTc elongation was observed, and adverse events were not dose-dependent. Favorable exposure, tolerability, safety, and an extended MRT0-t suggest that WX-081 holds promise as a phase II development candidate for drug-resistant TB treatment.


Sujet(s)
Antituberculeux , Interactions aliments-médicaments , Volontaires sains , Humains , Adulte , Mâle , Antituberculeux/pharmacocinétique , Antituberculeux/administration et posologie , Antituberculeux/effets indésirables , Antituberculeux/sang , Jeune adulte , Femelle , Relation dose-effet des médicaments , Adulte d'âge moyen , Aire sous la courbe , Période , Chine , Asiatiques , Études croisées , Peuples d'Asie de l'Est
10.
Curr Issues Mol Biol ; 46(7): 6769-6782, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39057046

RÉSUMÉ

Camellia fascicularis has important ornamental, medicinal, and food value. It also has tremendous potential for exploiting bioactivities. However, the bioactivities of secondary metabolites in C. fascicularis have not been reported. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 15 compounds were identified, including 5 flavonoids (1-5), a galactosylglycerol derivative (6), a terpenoid (7), 4 lignans (8-11), and 4 phenolic acids (12-15). Compounds 6-7 and 9-12 were isolated from the genus Camellia for the first time. The remaining compounds were also isolated from C. fascicularis for the first time. Evaluation of antioxidant and antimicrobial activities revealed that compounds 5 and 8-11 exhibited stronger antioxidant activity than the positive drug ascorbic acid, while compounds 7, 13, and 15 showed similar activity to ascorbic acid. The minimum inhibitory concentration (MIC) of antibacterial activity for compounds 5, 7, 9, 11, and 13 against Pseudomonas aeruginosa was comparable to that of the positive control drug tetracycline at a concentration of 62.50 µg/mL; other secondary metabolites inhibited Escherichia coli and Staphylococcus aureus at concentrations ranging from 125-250 µg/mL.

11.
Am J Hypertens ; 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39023012

RÉSUMÉ

BACKGROUND: Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3) / AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either high-salt diet (8% NaCl; DSH group) or normal diet (0.3% NaCl; DSN group). Then DSH group were administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of SBP, the expression levels of lipid metabolism-related biomarker, pathological examination of atrial fibrosis and lipid accumulation, as well as AF inducibility and AF duration. RESULTS: DSH decrease SIRT3, phosphorylation-AMPK and VLCAD expression, increased FASN and FABP4 expression and concentrations of FFA and TG, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4. CONCLUSIONS: We have confirmed that high-salt diet can result in hypertension, associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.

12.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-39000568

RÉSUMÉ

Osteoarthritis (OA) is the most common joint disease, causing symptoms such as joint pain, swelling, and deformity, which severely affect patients' quality of life. Despite advances in medical treatment, OA management remains challenging, necessitating the development of safe and effective drugs. Quercetin (QUE), a natural flavonoid widely found in fruits and vegetables, shows promise due to its broad range of pharmacological effects, particularly in various degenerative diseases. However, its role in preventing OA progression and its underlying mechanisms remain unclear. In this study, we demonstrated that QUE has a protective effect against OA development both in vivo and in vitro, and we elucidated the underlying molecular mechanisms. In vitro, QUE inhibited the expression of IL-1ß-induced chondrocyte matrix metalloproteinases (MMP3 and MMP13) and inflammatory mediators such as INOS and COX-2. It also promoted the expression of collagen II, thereby preventing the extracellular matrix (ECM). Mechanistically, QUE exerts its protective effect on chondrocytes by activating the SIRT1/Nrf-2/HO-1 and inhibiting chondrocyte ferroptosis. Similarly, in an OA rat model induced by anterior cruciate ligament transection (ACLT), QUE treatment improved articular cartilage damage, reduced joint pain, and normalized abnormal subchondral bone remodeling. QUE also reduced serum IL-1ß, TNF-α, MMP3, CTX-II, and COMP, thereby slowing the progression of OA. QUE exerts chondroprotective effects by inhibiting chondrocyte oxidative damage and ferroptosis through the SIRT1/Nrf-2/HO-1 pathway, effectively alleviating OA progression in rats.


Sujet(s)
Cartilage articulaire , Chondrocytes , Modèles animaux de maladie humaine , Ferroptose , Facteur-2 apparenté à NF-E2 , Arthrose , Quercétine , Sirtuine-1 , Animaux , Sirtuine-1/métabolisme , Arthrose/traitement médicamenteux , Arthrose/métabolisme , Arthrose/anatomopathologie , Rats , Quercétine/pharmacologie , Quercétine/usage thérapeutique , Facteur-2 apparenté à NF-E2/métabolisme , Chondrocytes/effets des médicaments et des substances chimiques , Chondrocytes/métabolisme , Ferroptose/effets des médicaments et des substances chimiques , Cartilage articulaire/effets des médicaments et des substances chimiques , Cartilage articulaire/anatomopathologie , Cartilage articulaire/métabolisme , Mâle , Transduction du signal/effets des médicaments et des substances chimiques , Rat Sprague-Dawley , Interleukine-1 bêta/métabolisme , Heme oxygenase (decyclizing)/métabolisme
13.
Shanghai Kou Qiang Yi Xue ; 33(2): 164-169, 2024 Apr.
Article de Chinois | MEDLINE | ID: mdl-39005093

RÉSUMÉ

PURPOSE: The characteristics of saliva and intestinal microbial community in children with high caries and no caries were analyzed by 16S rDNA high-throughput sequencing. METHODS: Among 431 children aged 3-5 years old in Zunyi City who were investigated previously by our team, 25 children in the high caries group and the same in the caries-free group were selected for fecal and saliva samples. 16S rDNA high-throughput sequencing was used to analyze the bacterial flora structure of the samples and identify the species with different relative abundance at the species level. SPSS 18.0 software package was used for data analysis. RESULTS: The diversity of intestinal flora in the high caries group was higher than that in the caries-free group, and the difference was statistically significant(P<0.05). The diversity of salivary flora in the high caries group was more than that in the caries-free group, with no significant difference(P>0.05). At phylum level,there was no significant difference in intestinal and salivary flora between children with high caries and children without caries. At gene level, Blautia, [Eubacterium] hallii group and [Eubacterium] eligens group in the intestine of caries-free group were significantly higher than those of high caries group(P<0.05), while Parasutterella and Christensenellaceae R-7 group were significantly lower than those of high caries group(P<0.05). At gene level, Peptostreptococcus in saliva of caries-free group was significantly higher than that in high caries group(P<0.05). Dialister, Kingella, Escherichia-Shigella and Treponema in saliva of caries-free group were significantly lower than those in high caries group(P<0.05). CONCLUSIONS: There are significant differences in species composition of intestinal flora but no in salivary flora between children with high caries and children without caries.


Sujet(s)
Caries dentaires , Microbiome gastro-intestinal , Séquençage nucléotidique à haut débit , ARN ribosomique 16S , Salive , Humains , Salive/microbiologie , Caries dentaires/microbiologie , Enfant d'âge préscolaire , Séquençage nucléotidique à haut débit/méthodes , ARN ribosomique 16S/génétique , Microbiome gastro-intestinal/génétique , Fèces/microbiologie , Eubacterium/génétique , ADN bactérien/génétique , ADN ribosomique/génétique
14.
Nanoscale ; 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39034677

RÉSUMÉ

This study reports a fluorescent nanoprobe operated in fluorescence turn-on mode for simultaneously sensing and imaging intracellular GSH and ATP. By using maleimide-derivatives as the ligand, the bimetallic nanoscale metal-organic framework (NMOF) Cu-Mi-UiO-66 has been synthesized for the first time using a straightforward one-step solvothermal approach, serving as a GSH recognition moiety. Subsequently, a Cy5-labeled ATP aptamer was assembled onto Cu-Mi-UiO-66 via strong coordination between phosphate and zirconium, π-π stacking and electrostatic adsorption to develop the dual-responsive fluorescence nanoprobe Cu-Mi-UiO-66/aptamer. Due to the photoinduced electron transfer (PET) effect between maleimide groups and the benzene ring of the ligand and the charge transfer between Cy5 and the Zr(IV)/Cu(II) bimetal center of the NMOF, the Cu-Mi-UiO-66/aptamer exhibits a fluorescence turn-off status. The Michael addition reaction between the thiol group of GSH and the maleimide on the NMOF skeleton results in turning on of the blue fluorescence of Cu-Mi-UiO-66. Meanwhile, upon specific interaction with ATP, the aptamer changes into internal loop structures and detaches from Cu-Mi-UiO-66, resulting in turning on of the red fluorescence of Cy5. The nanoprobe demonstrated an excellent sensing performance with a good linear range (GSH, 5.0-450.0 µM; ATP, 1.0-50.0 µM) and a low detection limit (GSH, 2.17 µM; ATP, 0.635 µM). More importantly, the Cu-Mi-UiO-66/aptamer exhibits good performance for tracing intracellular concentration variations of GSH and ATP in living HepG2 cells under different stimulations. This study highlights the potential of NMOFs for multiplexed analysis and provides a valuable tool for tumor microenvironment research and early cancer diagnosis.

15.
Onco Targets Ther ; 17: 557-565, 2024.
Article de Anglais | MEDLINE | ID: mdl-39006884

RÉSUMÉ

Background/Aims: There are currently few reports describing the liquid-based cytological characteristics of small cell neuroendocrine carcinoma of the cervix. This study aimed to retrospectively analyze these features to reduce missed or misdiagnosis. Methods: A total of 11 patients with histologically diagnosed small cell carcinoma of the cervix from three hospitals between 2017 and 2023 were included in this study. The cytological morphology of small cell carcinoma of the cervix and causes of missed or misdiagnosis were analyzed and summarized through a review of clinical data, liquid-based cytology, histology, immunohistochemistry, and human papillomaviruses (HPV) test results. Results: In this study, the positivity rate of preliminary cytological screening was 63.6% (7/11); however, no cases were accurately diagnosed as small cell carcinoma of the cervix. A total of 36.4% (4/11) of small cell carcinoma of the cervix cases were cytologically negative; retrospective cytology found that two of these were false negatives. The main cytological features of small cell carcinoma of the cervix were summarized. Most of the liquid-based cytology smear cells were dense, and almost all cases showed clustered and scattered cytoplasm-scanty tumor cells. The tumor cells were all deeply stained and relatively consistent small cells. Most cases showed typical nuclear molding, chromatin stippling, and no obvious nucleoli. Mild nuclear smears, nuclear fragments, and mitotic figures were seen in most cases. Conclusion: Liquid-based cytology has a high rate of missed diagnosis and misdiagnosis in small cell carcinoma of the cervix. This study confirms that reviewing cytology results can effectively reduce this proportion and that increasing understanding of small cell carcinoma of the cervix morphology is conducive to improving the cytology-based diagnosis rate.

16.
Animal Model Exp Med ; 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992966

RÉSUMÉ

BACKGROUND: Macrophages are the primary innate immune cells encountered by the invading coronaviruses, and their abilities to initiate inflammatory reactions, to maintain the immunity homeostasis by differential polarization, to train the innate immune system by epigenic modification have been reported in laboratory animal research. METHODS: In the current in vitro research, murine macrophage RAW 264.7 cell were infected by mouse hepatitis virus, a coronavirus existed in mouse. At 3-, 6-, 12-, 24-, and 48-h post infection (hpi.), the attached cells were washed with PBS and harvested in Trizol reagent. Then The harvest is subjected to transcriptome sequencing. RESULTS: The transcriptome analysis showed the immediate (3 hpi.) up regulation of DEGs related to inflammation, like Il1b and Il6. DEGs related to M2 differential polarization, like Irf4 showed up regulation at 24 hpi., the late term after viral infection. In addition, DEGs related to metabolism and histone modification, like Ezh2 were detected, which might correlate with the trained immunity of macrophages. CONCLUSIONS: The current in vitro viral infection study showed the key innated immunity character of macrophages, which suggested the replacement value of viral infection cells model, to reduce the animal usage in preclinical research.

17.
J Hazard Mater ; 476: 135098, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38970977

RÉSUMÉ

Next-generation sequencing (NGS) has revolutionized taxa identification within contaminant-degrading communities. However, uncovering a core degrading microbiome in diverse polluted environments and understanding its associated microbial interactions remains challenging. In this study, we isolated two distinct microbial consortia, namely MA-S and Cl-G, from separate environmental samples using 1,4-dioxane as a target pollutant. Both consortia exhibited a persistent prevalence of the phylum Proteobacteria, especially within the order Rhizobiales. Extensive analysis confirmed that Rhizobiales as the dominant microbial population (> 90 %) across successive degradation cycles, constituting the core degrading microbiome. Co-occurrence network analysis highlighted synergistic interactions within Rhizobiales, especially within the Shinella and Xanthobacter genera, facilitating efficient 1,4-dioxane degradation. The enrichment of Rhizobiales correlated with an increased abundance of essential genes such as PobA, HpaB, ADH, and ALDH. Shinella yambaruensis emerged as a key degrader in both consortia, identified through whole-genome sequencing and RNA-seq analysis, revealing genes implicated in 1,4-dioxane degradation pathways, such as PobA and HpaB. Direct and indirect co-cultivation experiments confirmed synergistic interaction between Shinella sp. and Xanthobacter sp., enhancing the degradation of 1,4-dioxane within the core microbiome Rhizobiales. Our findings advocate for integrating the core microbiome concept into engineered consortia to optimize 1,4-dioxane bioremediation strategies.

19.
Heliyon ; 10(12): e33132, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-39022094

RÉSUMÉ

Background: Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods: Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results: We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion: These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.

20.
Medicine (Baltimore) ; 103(28): e38865, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38996107

RÉSUMÉ

Type 2 diabetes mellitus (T2DM) is a risk factor for patients with impaired renal function. The onset of T2DM-induced diabetic kidney disease (DKD) is frequently sub-clinical, potentially culminating in end-stage renal disease. In the current study the factors influencing DKD in elderly patients diagnosed with T2DM were determined. A retrospective cohort study was conducted involving patients ≥60 years of age with T2DM from June 2019 to December 2022. The Cockcroft-Gault formula was used to estimate the glomerular filtration rate. The clinical information and biochemical indicators of patients with an estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73m2 were collected. Patients were grouped based on a 3-year eGFR decline < 15% and ≥ 15%. The differences between the two groups were compared and the factors influencing the 3-year eGFR decline ≥ 15% were analyzed. A total of 242 patients were included, including 154 in the group with a 3-year eGFR decline < 15% and 88 in the group with a three-year eGFR decline ≥ 15%. Univariate logistic regression analysis showed that smoking cigarettes, and triglycerides (TG) and high-density lipoprotein levels were related to a 3-year eGFR decline ≥ 15% (P = .039, P < .001, and P = .011, respectively). Multivariate logistic regression analysis showed that the TG level was independently related to a 3-year eGFR decline ≥ 15% (P = .004; OR = 2.316). There was a significant linear relationship between the eGFR decline and TG level (P = .002). Patients with a TG concentration > 1.7 mmol/L had a more apparent decrease in the eGFR (P < .05). For elderly patients with T2DM and an eGFR < 90 mL/min/1.73m2, the TG level may be an important risk factor for deteriorating renal function that warrants actively intervention.


Sujet(s)
Diabète de type 2 , Néphropathies diabétiques , Débit de filtration glomérulaire , Humains , Diabète de type 2/complications , Diabète de type 2/physiopathologie , Diabète de type 2/épidémiologie , Mâle , Femelle , Études rétrospectives , Sujet âgé , Néphropathies diabétiques/physiopathologie , Néphropathies diabétiques/sang , Néphropathies diabétiques/étiologie , Adulte d'âge moyen , Facteurs de risque , Études de suivi , Sujet âgé de 80 ans ou plus
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE