Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Clin Cancer Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848043

ABSTRACT

PURPOSE: Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibit DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN: Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) were tested in vitro on gynecological sarcoma cell lines SK-UT-1, and SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2 knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS: Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining (NHEJ) DNA repair. Compared to wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and NHEJ repairs were impaired. CONCLUSIONS: Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacological inhibition of ATM enhanced the efficacy of PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.

2.
Blood ; 142(23): 2002-2015, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37738460

ABSTRACT

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Subject(s)
Histones , Leukemia, Myeloid, Acute , Animals , Mice , Histones/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mutation , Methylation , Nucleotidyltransferases/metabolism , Leukemia, Myeloid, Acute/pathology , Immunity , Polyploidy
3.
Cancer Sci ; 114(5): 2078-2086, 2023 May.
Article in English | MEDLINE | ID: mdl-36762786

ABSTRACT

Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.


Subject(s)
Neoplasms , Ribosomal Proteins , Humans , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Cell Cycle Checkpoints/genetics , Neoplasms/genetics , Neoplasms/metabolism
4.
Hepatology ; 77(3): 729-744, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35302667

ABSTRACT

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Aneuploidy , Carcinoma, Hepatocellular/pathology , Cell Cycle , Cell Line, Tumor , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism
5.
Genes Cells ; 27(10): 602-612, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36054428

ABSTRACT

Bladder cancer (BlC) is the fourth most common cancer in males worldwide, but few systemic chemotherapy options for its effective treatment exist. The development of new molecularly-targeted agents against BlC is therefore an urgent issue. The Hippo signaling pathway, with its upstream LATS kinases and downstream transcriptional co-activators YAP1 and TAZ, plays a pivotal role in diverse cell functions, including cell proliferation. Recent studies have shown that overexpression of YAP1 occurs in advanced BlCs and is associated with poor patient prognosis. Accessing data from our previous screening of a chemical library of compounds targeting the Hippo pathway, we identified DMPCA (N-(3,4-dimethoxyphenethyl)-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine) as an agent able to induce the phosphorylation of LATS1 and YAP1/TAZ in BlC cells, thereby suppressing their viability both in vitro and in mouse xenografts. Our data indicate that DMPCA has a potent anti-tumor effect, and raise the possibility that this agent may represent a new and effective therapeutic option for BlC.


Subject(s)
Urinary Bladder Neoplasms , Animals , Humans , Male , Mice , Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Amines , Carbazoles , Protein Serine-Threonine Kinases , Signal Transduction/physiology , Transcription Factors/metabolism , Urinary Bladder Neoplasms/drug therapy , YAP-Signaling Proteins
6.
Proc Natl Acad Sci U S A ; 119(32): e2119514119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914158

ABSTRACT

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Killer Cells, Natural/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases/metabolism , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use
7.
Cell Death Differ ; 29(6): 1107-1122, 2022 06.
Article in English | MEDLINE | ID: mdl-35581387

ABSTRACT

The coronavirus disease 2019 (COVID-19) has been a global pandemic for more than 2 years and it still impacts our daily lifestyle and quality in unprecedented ways. A better understanding of immunity and its regulation in response to SARS-CoV-2 infection is urgently needed. Based on the current literature, we review here the various virus mutations and the evolving disease manifestations along with the alterations of immune responses with specific focuses on the innate immune response, neutrophil extracellular traps, humoral immunity, and cellular immunity. Different types of vaccines were compared and analyzed based on their unique properties to elicit specific immunity. Various therapeutic strategies such as antibody, anti-viral medications and inflammation control were discussed. We predict that with the available and continuously emerging new technologies, more powerful vaccines and administration schedules, more effective medications and better public health measures, the COVID-19 pandemic will be under control in the near future.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Immunity, Innate , Pandemics/prevention & control , SARS-CoV-2
8.
Cell Death Differ ; 29(10): 2024-2033, 2022 10.
Article in English | MEDLINE | ID: mdl-35641782

ABSTRACT

The ability to effectively clear infection is fundamental to host survival. Sepsis, defined as dysregulated host response to infection, is a heterogenous clinical syndrome that does not uniformly clear intact bacterial or sterile infection (i.e., lipopolysaccharide). These findings were further associated with increased survival in DJ-1 deficient animals exposed to intact bacteria relative to DJ-1 deficient challenged with lipopolysaccharide. We analyzed bacterial and lipopolysaccharide clearance in bone marrow macrophages (BMM) cultured ex vivo from wild-type and DJ-1 deficient mice. Importantly, we demonstrated that DJ-1 deficiency in BMM promotes Rubicon-dependent increase in L3C-associated phagocytosis, non-canonical autophagy pathway used for xenophagy, during bacterial but not lipopolysaccharide infection. In contrast to DJ-1 deficient BMM challenged with lipopolysaccharide, DJ-1 deficient BMM exposed to intact bacteria showed enhanced Rubicon complexing with Beclin-1 and UVRAG and consistently facilitated the assembly of complete autophagolysosomes that were decorated with LC3 molecules. Our data shows DJ-1 impairs or/and delays bacterial clearance and late autophagolysosome formation by binding to Rubicon resulting in Rubicon degradation, decreased L3C-associated phagocytosis, and decreased bacterial clearance in vitro and in vivo - implicating Rubicon and DJ-1 as critical regulators of bacterial clearance in experimental sepsis.


Subject(s)
Phagocytosis , Sepsis , Animals , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Beclin-1 , Intracellular Signaling Peptides and Proteins/genetics , Lipopolysaccharides/pharmacology , Mice , Phagocytosis/physiology
9.
Cancer Sci ; 112(10): 4303-4316, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289205

ABSTRACT

Yes-associated protein 1 (YAP1) and its paralogue PDZ-binding motif (TAZ) play pivotal roles in cell proliferation, migration, and invasion, and abnormal activation of these TEAD transcriptional coactivators is found in diverse cancers in humans and mice. Targeting YAP1/TAZ signaling is thus a promising therapeutic avenue but, to date, few selective YAP1/TAZ inhibitors have been effective against cancer cells either in vitro or in vivo. We screened chemical libraries for potent YAP1/TAZ inhibitors using a highly sensitive luciferase reporter system to monitor YAP1/TAZ-TEAD transcriptional activity in cells. Among 29 049 low-molecular-weight compounds screened, we obtained nine hits, and the four of these that were the most effective shared a core structure with the natural product alantolactone (ALT). We also tested 16 other structural derivatives of ALT and found that natural ALT was the most efficient at increasing ROS-induced LATS kinase activities and thus YAP1/TAZ phosphorylation. Phosphorylated YAP1/TAZ proteins were subject to nuclear exclusion and proteosomic degradation such that the growth of ALT-treated tumor cells was inhibited both in vitro and in vivo. Our data show for the first time that ALT can be used to target the ROS-YAP pathway driving tumor cell growth and so could be a potent anticancer drug.


Subject(s)
Acyltransferases/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Lactones/pharmacology , Reactive Oxygen Species/metabolism , Sesquiterpenes, Eudesmane/pharmacology , Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Auranofin/pharmacology , Cell Movement , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cell Self Renewal , DNA-Binding Proteins/metabolism , Drug Discovery , Female , Inula/chemistry , Luciferases , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Nuclear Proteins/metabolism , Phosphorylation/drug effects , Proteolysis/drug effects , Small Molecule Libraries , TEA Domain Transcription Factors , Tongue Neoplasms/chemically induced , Tongue Neoplasms/prevention & control , Transcription Factors/metabolism , Transcriptional Activation , YAP-Signaling Proteins
10.
Genes Cells ; 26(9): 714-726, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34142411

ABSTRACT

There are currently no treatments for salivary gland diseases, making it vital to understand signaling mechanisms operating in acinar and ductal cells so as to develop regenerative therapies. To date, little work has focused on elucidating the signaling cascades controlling the differentiation of these cell types in adult mammals. To analyze the function of the Hippo-TAZ/YAP1 pathway in adult mouse salivary glands, we generated adMOB1DKO mice in which both MOB1A and MOB1B were TAM-inducibly deleted when the animals were adults. Three weeks after TAM treatment, adMOB1DKO mice exhibited smaller submandibular glands (SMGs) than controls with a decreased number of acinar cells and an increased number of immature dysplastic ductal cells. The mutants suffered from reduced saliva production accompanied by mild inflammatory cell infiltration and fibrosis in SMGs, similar to the Sjogren's syndrome. MOB1-deficient acinar cells showed normal proliferation and apoptosis but decreased differentiation, leading to an increase in acinar/ductal bilineage progenitor cells. These changes were TAZ-dependent but YAP1-independent. Biochemically, MOB1-deficient salivary epithelial cells showed activation of the TAZ/YAP1 and ß-catenin in ductal cells, but reduced SOX2 and SOX10 expression in acinar cells. Thus, Hippo-TAZ signaling is critical for proper ductal and acinar cell differentiation and function in adult mice.


Subject(s)
Acinar Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Cell Proliferation , Salivary Glands/metabolism , Acinar Cells/cytology , Acinar Cells/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Cells, Cultured , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Salivary Glands/cytology , beta Catenin/genetics , beta Catenin/metabolism
11.
Nat Commun ; 12(1): 1914, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772013

ABSTRACT

Innate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Lipids/immunology , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , Female , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/metabolism , Influenza, Human/virology , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Lung/immunology , Lung/metabolism , Lung/virology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Receptors, Antigen, T-Cell, gamma-delta/metabolism
12.
Cancer Sci ; 112(1): 51-60, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159406

ABSTRACT

The Hippo-YAP pathway regulates organ size, tissue homeostasis, and tumorigenesis in mammals. In response to cell density, external mechanical pressure, and/or other stimuli, the Hippo core complex controls the translocation of YAP1/TAZ proteins to the nucleus and thereby regulates cell growth. Abnormal upregulation or nuclear localization of YAP1/TAZ occurs in many human malignancies and promotes their formation, progression, and metastasis. A key example is squamous cell carcinoma (SCC) genesis. Many risk factors and crucial signals associated with SCC development in various tissues accelerate YAP1/TAZ accumulation, and mice possessing constitutively activated YAP1/TAZ show immediate carcinoma in situ (CIS) formation in these tissues. Because CIS onset is so rapid in these mutants, we propose that many SCCs initiate and progress when YAP1 activity is sustained and exceeds a certain oncogenic threshold. In this review, we summarize the latest findings on the roles of YAP1/TAZ in several types of SCCs. We also discuss whether targeting aberrant YAP1/TAZ activation might be a promising strategy for SCC treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Animals , Carcinoma, Squamous Cell/pathology , Cell Proliferation/physiology , Humans
13.
Sci Adv ; 6(12): eaay3324, 2020 03.
Article in English | MEDLINE | ID: mdl-32206709

ABSTRACT

Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common group of cancers in the world, and patients have a poor prognosis. Here, we present data indicating that YAP1 may be a strong driver of the onset and progression of oral SCC (OSCC), a major subtype of HNSCC. Mice with tongue-specific deletion of Mob1a/b and thus endogenous YAP1 hyperactivation underwent surprisingly rapid and highly reproducible tumorigenesis, developing tongue carcinoma in situ within 2 weeks and invasive SCC within 4 weeks. In humans, precancerous tongue dysplasia displays YAP1 activation correlating with reduced patient survival. Combinations of molecules mutated in OSCC may increase and sustain YAP1 activation to the point of oncogenicity. Strikingly, siRNA or pharmacological inhibition of YAP1 blocks murine OSCC onset in vitro and in vivo. Our work justifies targeting YAP1 as therapy for OSCC and perhaps HNSCC, and our mouse model represents a powerful tool for evaluating these agents.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Squamous Cell/etiology , Mouth Neoplasms/etiology , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Biomarkers, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Progression , Disease Susceptibility , Gene Expression , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/deficiency , Mice , Mice, Knockout , Mouth Neoplasms/metabolism , Mouth Neoplasms/mortality , Mouth Neoplasms/pathology , Oncogene Proteins , Prognosis , YAP-Signaling Proteins
14.
Mol Oncol ; 13(10): 2033-2048, 2019 10.
Article in English | MEDLINE | ID: mdl-31441992

ABSTRACT

Autophagy is a conserved self-eating process that delivers cytoplasmic material to the lysosome to allow degradation of intracellular components, including soluble, unfolded and aggregated proteins, damaged organelles, and invading microorganisms. Autophagy provides a homeostatic control mechanism and is essential for balancing sources of energy in response to nutrient stress. Autophagic dysfunction or dysregulation has been implicated in several human pathologies, including cancer and neurodegeneration, and its modulation has substantial potential as a therapeutic strategy. Given the relevant clinical and therapeutic implications of autophagy, there is emerging intense interest in the identification of the key factors regulating the components of the autophagic machinery. Various post-translational modifications, including ubiquitylation, have been implicated in autophagy control. The list of the E3 ubiquitin protein ligases involved in the regulation of several steps of the autophagic process is continuously growing. In this review, we will focus on recent advances in the understanding of the role of the homologous to the E6AP carboxyl terminus-type E3 ubiquitin ligases in autophagy control.


Subject(s)
Autophagy , Ubiquitin-Protein Ligases/metabolism , Animals , Humans , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Protein Domains , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
15.
Genes Cells ; 24(7): 485-495, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31125466

ABSTRACT

Mammalian STE20-like protein kinase 1/2 (MST1/2) and nuclear Dbf2-related kinase 1/2 (NDR1/2) are core components of Hippo signaling that are also known to be important regulators of lymphocyte trafficking. However, little is understood about the roles of other Hippo pathway molecules in these cells. Here, we present the first analysis of the function of Mps one binder kinase activator-1 (MOB1) in T lymphocytes in vivo. T-cell-specific double knockout (DKO) of MOB1A/B in mice [tMob1 DKO mice] reduces the number of naïve T cells in both the circulation and secondary lymphoid organs, but leads to an accumulation of CD4+ CD8- and CD4- CD8+ single-positive (SP) cells in the thymus. In vitro, naïve MOB1A/B-deficient T cells show increased apoptosis and display impaired trafficking capacity in response to the chemokine CCL19. These defects are linked to suppression of the activation of MST and NDR kinases, but are independent of the downstream transcriptional co-activator Yes-associated protein 1 (YAP1). Thus, MOB1 proteins play an important role in thymic egress and T-cell survival that is mediated by a pathway other than conventional Hippo-YAP1 signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation , Phosphoproteins/metabolism , Phosphoproteins/physiology , Protein Kinases/physiology , T-Lymphocytes/immunology , Thymocytes/immunology , Animals , Apoptosis , Cell Cycle Proteins , Cells, Cultured , Chemotaxis , Female , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Thymocytes/metabolism , Thymocytes/pathology , YAP-Signaling Proteins
16.
FASEB J ; 33(4): 5548-5560, 2019 04.
Article in English | MEDLINE | ID: mdl-30640535

ABSTRACT

Cell competition is involved in mammalian embryogenesis and tumor elimination and progression. It was previously shown that, whereas NIH3T3 mouse fibroblasts expressing high levels of the yes-associated protein 1(YAP1) target TEA domain family (TEAD) transcription factors become "winners" in cell competitions, Madin-Darby canine kidney cells expressing activated YAP1 become "losers" and are eliminated from culture monolayers. Thus, YAP1's role in cell competitions is clearly context dependent. Here, we show that keratinocytes overexpressing a constitutively activated YAP1 mutant lose in in vitro competitions with control cells conducted in standard tissue culture dishes and undergo apical extrusion. Similarly, cells in which endogenous YAP1 is activated by NF2 knockdown become losers. The YAP1-overexpressing cells exhibit a decrease in cell-matrix adhesion because of defective expression of adhesion molecules such as fibronectin-1. Cell adhesion-mediated proliferation is also impaired. However, because of intrinsic factors, YAP1-expressing cells proliferate faster than control cells when cocultured in dishes impeding cell adhesion. In vivo, Mob1a/b-deficient (YAP1-activated) epidermis, which shows decreased expression of type XVII collagen, cannot be engrafted successfully onto donor mice. YAP1-activated skin grafts shrink away from surrounding control skin, and the epidermis peels off the basement membrane. Our data show that YAP1 activation controls cell competition in part by decreasing cell adhesion.-Nishio, M., Miyachi, Y., Otani, J., Tane, S., Omori, H., Ueda, F., Togashi, H., Sasaki, T., Mak, T. W., Nakao, K., Fujita, Y., Nishina, H., Maehama, T., Suzuki, A. Hippo pathway controls cell adhesion and context-dependent cell competition to influence skin engraftment efficiency.


Subject(s)
Cell Adhesion/physiology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Skin/metabolism , Animals , Cell Proliferation/physiology , Dogs , Embryonic Development/physiology , Fibronectins/metabolism , Keratinocytes/metabolism , Keratinocytes/physiology , Madin Darby Canine Kidney Cells , Mice , NIH 3T3 Cells , Transcription Factors/metabolism
17.
Cell Metab ; 28(6): 811-813, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30517895

ABSTRACT

Metabolic reprogramming is a hallmark of cancer cell metabolism. Recently, in Cancer Cell, Ye and colleagues (2018) reported that leukemic cells have the capacity to modulate glucose metabolism in multiple organs of their host, thereby increasing the glucose resources available for malignant cell growth.


Subject(s)
Leukemia , Neoplasms , Carbohydrate Metabolism , Cell Transformation, Neoplastic , Glucose , Humans
18.
Cell Death Differ ; 25(11): 1885-1904, 2018 11.
Article in English | MEDLINE | ID: mdl-30323273

ABSTRACT

The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.


Subject(s)
Gene-Environment Interaction , Neoplasms/genetics , Precision Medicine , Carcinogenesis , Consensus , DNA Damage , Genome-Wide Association Study , Humans , Neoplasms/epidemiology , Neoplasms/pathology , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
Development ; 145(6)2018 03 16.
Article in English | MEDLINE | ID: mdl-29511023

ABSTRACT

Hippo signaling is modulated in response to cell density, external mechanical forces, and rigidity of the extracellular matrix (ECM). The Mps one binder kinase activator (MOB) adaptor proteins are core components of Hippo signaling and influence Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which are potent transcriptional regulators. YAP1/TAZ are key contributors to cartilage and bone development but the molecular mechanisms by which the Hippo pathway controls chondrogenesis are largely unknown. Cartilage is rich in ECM and also subject to strong external forces - two upstream factors regulating Hippo signaling. Chondrogenesis and endochondral ossification are tightly controlled by growth factors, morphogens, hormones, and transcriptional factors that engage in crosstalk with Hippo-YAP1/TAZ signaling. Here, we generated tamoxifen-inducible, chondrocyte-specific Mob1a/b-deficient mice and show that hyperactivation of endogenous YAP1/TAZ impairs chondrocyte proliferation and differentiation/maturation, leading to chondrodysplasia. These defects were linked to suppression of SOX9, a master regulator of chondrogenesis, the expression of which is mediated by TEAD transcription factors. Our data indicate that a MOB1-dependent YAP1/TAZ-TEAD complex functions as a transcriptional repressor of SOX9 and thereby negatively regulates chondrogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Osteochondrodysplasias/genetics , Phosphoproteins/metabolism , SOX9 Transcription Factor/metabolism , Animals , Blotting, Western , Cell Culture Techniques , Cell Cycle Proteins , Cell Differentiation/genetics , Cell Proliferation/genetics , Chondrocytes/metabolism , Chondrogenesis/genetics , Chromatin Immunoprecipitation , Gene Expression Regulation , Immunohistochemistry , Intracellular Signaling Peptides and Proteins , Mice , Osteochondrodysplasias/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction , Trans-Activators , YAP-Signaling Proteins
20.
J Bone Miner Res ; 33(6): 1141-1153, 2018 06.
Article in English | MEDLINE | ID: mdl-29444358

ABSTRACT

Lipocalin 2 (Lcn2) is an adipokine that carries out a variety of functions in diverse organs. We investigated the bone phenotype and the energy metabolism of Lcn2 globally deleted mice (Lcn2-/- ) at different ages. Lcn2-/- mice were largely osteopenic, exhibiting lower trabecular bone volume, lesser trabecular number, and higher trabecular separation when compared to wild-type (WT) mice. Lcn2-/- mice showed a lower osteoblast number and surface over bone surface, and subsequently a significantly lower bone formation rate, while osteoclast variables were unremarkable. Surprisingly, we found no difference in alkaline phosphatase (ALP) activity or in nodule mineralization in Lcn2-/- calvaria osteoblast cultures, while less ALP-positive colonies were obtained from freshly isolated Lcn2-/- bone marrow stromal cells, suggesting a nonautonomous osteoblast response to Lcn2 ablation. Given that Lcn2-/- mice showed higher body weight and hyperphagia, we investigated whether their osteoblast impairment could be due to altered energy metabolism. Lcn2-/- mice showed lower fasted glycemia and hyperinsulinemia. Consistently, glucose tolerance was significantly higher in Lcn2-/- compared to WT mice, while insulin tolerance was similar. Lcn2-/- mice also exhibited polyuria, glycosuria, proteinuria, and renal cortex vacuolization, suggesting a kidney contribution to their phenotype. Interestingly, the expression of the glucose transporter protein type 1, that conveys glucose into the osteoblasts and is essential for osteogenesis, was significantly lower in the Lcn2-/- bone, possibly explaining the in vivo osteoblast impairment induced by the global Lcn2 ablation. Taken together, these results unveil an important role of Lcn2 in bone metabolism, highlighting a link with glucose metabolism that is more complex than expected from the current knowledge. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Bone Diseases, Metabolic/metabolism , Bone and Bones/metabolism , Energy Metabolism , Lipocalin-2/metabolism , Adiposity , Animals , Biomarkers/metabolism , Body Weight , Bone Diseases, Metabolic/pathology , Bone Remodeling , Glucose Transporter Type 1/metabolism , Gonads/metabolism , Kidney/metabolism , Mice, Inbred C57BL , Organ Size , Osteoblasts/metabolism , Osteoclasts/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...