Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(18): 8302-8311, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38652816

ABSTRACT

Diverse reactivity of the bulky tris(trimethylsilyl)silyl substituent [Si(SiMe3)3], also known as the hypersilyl group, was observed for amidinate-supported dichloro- and phenylchloroborane complexes. Treatment of the dichloroborane with potassium tris(trimethylsilyl)silyl led to the activation of the backbone ß-carbon center and formation of saturated four-membered heterocyclic chloroboranes R'{Si(SiMe3)3}C(NR)2BCl [R' = Ph, R = Cy (3); R' = Ph, R = iPr (6); R' = tBu, R = Cy (8)], whereas the four-membered amidinate hypersilyl-substituted phenyl borane 4 {PhC(NCy)2B(Ph)[Si(SiMe3)3]} was observed for the case of an amidinate-supported phenylchloroborane. The highly deshielded 11B NMR spectroscopic resonance and the distinct difference in the 29Si NMR spectrum confirmed the presence of a σ-donating hypersilyl effect on compounds 3, 6, and 8. Reaction of 3 with the Lewis acid AlCl3 led to the formation of complex 11 in which an unusual cleavage of one of the C-N bonds of the amidinate backbone is observed. Nucleophilic substitution at the boron center of saturated chloroborane 3 with phenyllithium generated the phenylborane derivative 12, whereas the secondary monomeric boron hydride 13 was observed after treatment with alane (AlH3). All compounds (2-13) have been fully characterized by NMR spectroscopy and single-crystal X-ray structure determination studies.

2.
Chem Sci ; 15(7): 2648-2654, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362430

ABSTRACT

Herein we report the B(C6F5)3-catalysed nitro-Mannich reaction between nitrones and silyl nitronates, affording silyl-protected α-nitro hydroxylamines with yields up to 99% and diastereoselectivities up to 99 : 1. Crucially, the obtained products can be converted into 1,2-diamines under simple reductive conditions. This work provides a new orthogonal method to the existing routes for the instalment of a nitro moiety under Lewis acid catalysed conditions, and expands the state-of-the-art substrate scope with respect to the silyl nitronates.

3.
J Org Chem ; 89(6): 4244-4248, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38389441

ABSTRACT

Herein, we report a synthetic method to access a range of highly substituted indoles via the B(C6F5)3-catalyzed transfer of 2° alkyl groups from amines. The transition-metal-free catalytic approach has been demonstrated across a broad range of indoles and amine 2° alkyl donors, including various substituents on both reacting components, to access useful C(3)-alkylated indole products. The alkyl transfer process can be performed using Schlenk line techniques in combination with commercially available B(C6F5)3·nH2O and solvents, which obviates the requirement for specialized equipment (e.g., glovebox).

4.
Angew Chem Int Ed Engl ; 63(9): e202316461, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38038149

ABSTRACT

The development of new methods for enantioselective reactions that generate stereogenic centres within molecules are a cornerstone of organic synthesis. Typically, metal catalysts bearing chiral ligands as well as chiral organocatalysts have been employed for the enantioselective synthesis of organic compounds. In this review, we highlight the recent advances in main group catalysis for enantioselective reactions using the p-block elements (boron, aluminium, phosphorus, bismuth) as a complementary and sustainable approach to generate chiral molecules. Several of these catalysts benefit in terms of high abundance, low toxicity, high selectivity, and excellent reactivity. This minireview summarises the utilisation of chiral p-block element catalysts for asymmetric reactions to generate value-added compounds.

5.
Chem Sci ; 14(47): 13661-13695, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075657

ABSTRACT

The rise of CO2 concentrations in the environment due to anthropogenic activities results in global warming and threatens the future of humanity and biodiversity. To address excessive CO2 emissions and its effects on climate change, efforts towards CO2 capture and conversion into value adduct products such as methane, methanol, acetic acid, and carbonates have grown. Frustrated Lewis pairs (FLPs) can activate small molecules, including CO2 and convert it into value added products. This review covers recent progress and mechanistic insights into intra- and inter-molecular FLPs comprised of varying Lewis acids and bases (from groups 13, 14, 15 of the periodic table as well as transition metals) that activate CO2 in stoichiometric and catalytic fashion towards reduced products.

6.
Dalton Trans ; 52(44): 16118-16122, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37901910

ABSTRACT

In this paper, we compare the reactivity of a series of triaryl borates B(OArx)3 as catalysts for the hydroboration of alkenes and alkynes. It was observed that commercially available B(OPh)3 performed the poorest, whereas catalysts with o-F atoms appeared to perform much better.

7.
Chem Rev ; 123(15): 9653-9675, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37431868

ABSTRACT

The activation and utilization of substrates mediated by Frustrated Lewis Pairs (FLPs) was initially believed to occur solely via a two-electron, cooperative mechanism. More recently, the occurrence of a single-electron transfer (SET) from the Lewis base to the Lewis acid was observed, indicating that mechanisms that proceed via one-electron-transfer processes are also feasible. As such, SET in FLP systems leads to the formation of radical ion pairs, which have recently been more frequently observed. In this review, we aim to discuss the seminal findings regarding the recently established insights into the SET processes in FLP chemistry as well as highlight examples of this radical formation process. In addition, applications of reported main group radicals will also be reviewed and discussed in the context of the understanding of SET processes in FLP systems.

8.
Dalton Trans ; 52(16): 5039-5043, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37063050

ABSTRACT

Herein we report the B(3,4,5-F3H2C6)3-catalysed C3-allylation of indoles using allylic esters. 25 examples of C3-allylated products are presented in up to 97% yield. The mechanism for the reaction was explored using detailed Density Functional Theory (DFT) studies.

9.
Chemistry ; 29(32): e202300957, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36975121

ABSTRACT

A flow electrochemical method towards the synthesis of N-nitroso compounds from secondary amines using cheap and readily available sodium nitrite has been developed. Sodium nitrite dissolved in aqueous acetonitrile made additional electrolytes unnecessary. This mild and straightforward approach made the use of acids or other harsh and toxic chemicals redundant. This procedure was applied to an assortment of cyclic and acyclic secondary amines (27 examples) resulting in yields of N-nitrosamines as high as 99 %. To demonstrate the practicality of the process, scaled-up reactions were performed. Finally, selected products could be purified by using an in-line acidic extraction.


Subject(s)
Amines , Nitrosamines , Amines/chemistry , Nitrosation , Sodium Nitrite , Electrochemistry , Nitrites
10.
Org Lett ; 25(3): 500-505, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36634071

ABSTRACT

Herein we report a mild, transition-metal-free, highly diastereoselective Lewis acid catalyzed methodology toward the synthesis of isoxazolidine-based diazo compounds from the reaction between vinyldiazo esters and nitrones. Interestingly, the isoxazolidine products were identified to have contrasting diastereoselectivity to previously reported metal-catalyzed reactions. Furthermore, the same catalyst can be used with enol diazo esters, prompting the formation of Mukaiyama-Mannich products. These diazo products can then be further functionalized to afford benzo[b]azepine and pyrrolidinone derivatives.

11.
Dalton Trans ; 52(6): 1820-1825, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36661186

ABSTRACT

A series of fluorinated triaryl borates B(OArF)3 (ArF = 2-FC6H4, 3-FC6H4, 4-FC6H4, 2,4-F2C6H3, 3,5-F2C6H3, 2,3,4-F3C6H2, 2,4,6-F3C6H2, 3,4,5-F3C6H2) have been prepared and isolated from the reactions of the mono-, di-, or tri-fluorophenol with BCl3. The Lewis acidity of these borates has been determined by NMR spectroscopic and theoretical methods and compared to their well-established borane counterpart.

12.
Org Lett ; 24(47): 8694-8697, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36394303

ABSTRACT

Herein, we report a one-pot synthesis of styrene derivatives via a novel B(C6F5)3-catalyzed E-selective isomerization of readily accessible allyl silanes and subsequent Hiyama coupling of the versatile alkenyl silane intermediates. This one-pot, two-step approach enables access to a broad range of styrene derivatives, including those containing Lewis basic functional groups, that cannot be accessed via the previously developed B(C6F5)3-catalyzed isomerization of allyl benzenes.

13.
ACS Cent Sci ; 8(7): 855-863, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35912338

ABSTRACT

Based on statistical analysis of CHN combustion results of 18 international service providers, it is determined that the ±0.4% deviation most commonly required by chemistry journals is not justified.

14.
Chemistry ; 28(63): e202202454, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35943082

ABSTRACT

Herein, we report the B(C6 F5 )3 -catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.


Subject(s)
Alkenes , Catalysis , Isomerism
15.
Org Biomol Chem ; 20(21): 4298-4302, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35575126

ABSTRACT

The synthesis of a series of α-aryl or α-alkyl functionalised ß-hydroxy and ß-keto esters has been achieved by reacting α-diazoesters with boranes, and aldehydes, ketones, anhydrides, nitriles, esters or isocyanates. In a mild reaction protocol, 26 examples are presented in yields up to 73%.


Subject(s)
Boranes , Esters , Catalysis , Ketones , Stereoisomerism
16.
Chemistry ; 28(45): e202201422, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35560742

ABSTRACT

An efficient and mild reaction protocol for the decarbonylation of isocyanates has been developed using catalytic amounts of Lewis acidic boranes. The electronic nature (electron withdrawing, electron neutral, and electron donating) and the position of the substituents (ortho/meta/para) bound to isocyanate controls the chain length and composition of the products formed in the reaction. Detailed DFT studies were undertaken to account for the formation of the mono/di-carboxamidation products and benzoxazolone compounds.


Subject(s)
Boranes , Isocyanates , Catalysis , Lewis Acids
17.
Chem Soc Rev ; 51(3): 869-994, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35005762

ABSTRACT

This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.


Subject(s)
Diynes , Catalysis
18.
ACS Catal ; 12(1): 442-452, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35028191

ABSTRACT

Reactive carbenes generated from diazo compounds are key intermediates for a range of organic reactions to afford synthetically useful organic compounds. The majority of these reactions have been carried out using transition metal catalysts. However, the formation of carbene intermediates using main group elements has not been widely investigated for synthetic purposes. Recent studies have demonstrated that triarylboranes can be used for the in situ generation of reactive carbene intermediates in both stoichiometric and catalytic reactions. These new reactivities of triarylboranes have gained significant attention in synthetic chemistry particularly in catalytic studies. The range of organic compounds that have been synthesized through these reactions are important as pharmaceuticals or agrochemicals. In this perspective, we highlight the recent progress and ongoing challenges of carbene transfer reactions generated from their corresponding diazo precursors using triarylboranes as catalysts. We also highlight the stoichiometric use of triarylboranes in which the boranes not only activate the diazo functionality to afford a carbene intermediate but also actively participate in the reactions as a reagent. The different mechanisms for activation and carbene transfer are described along with the mechanistic and computational studies that have aided the elucidation of these reaction pathways. Potential opportunities for the use of boranes as a catalyst toward different carbene transfer reactions and their future prospects are discussed.

19.
Chemistry ; 28(11): e202104376, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-34958698

ABSTRACT

Diazo compounds have been largely used as carbene precursors for carbene transfer reactions in a variety of functionalization reactions. However, the ease of carbene generation from the corresponding diazo compounds depends upon the electron donating/withdrawing substituents either side of the diazo functionality. These groups strongly impact the ease of N2 release. Recently, tris(pentafluorophenyl)borane [B(C6 F5 )3 ] has been shown to be an alternative transition metal-free catalyst for carbene transfer reactions. Herein, a density functional theory (DFT) study on the generation of carbene species from α-aryl α-diazocarbonyl compounds using catalytic amounts of B(C6 F5 )3 is reported. The significant finding is that the efficiency of the catalyst depends directly on the nature of the substituents on both the aryl ring and the carbonyl group of the substrate. In some cases, the boron catalyst has negligible effect on the ease of the carbene formation, while in other cases there is a dramatic reduction in the activation energy of the reaction. This direct dependence is not commonly observed in catalysis and this finding opens the way for intelligent design of this and other similar catalytic reactions.

20.
Angew Chem Int Ed Engl ; 60(46): 24395-24399, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34590773

ABSTRACT

In recent years, metal-free organic synthesis using triarylboranes as catalysts has become a prevalent research area. Herein we report a comprehensive computational and experimental study for the highly selective synthesis of N-substituted pyrazoles through the generation of carbenium species from the reaction between aryl esters and vinyl diazoacetates in the presence of catalytic tris(pentafluorophenyl)borane [B(C6 F5 )3 ]. DFT studies were undertaken to illuminate the reaction mechanism revealing that the in situ generation of a carbenium species acts as an autocatalyst to prompt the regiospecific formation of N-substituted pyrazoles in good to excellent yields (up to 81 %).

SELECTION OF CITATIONS
SEARCH DETAIL
...