Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648267

RESUMO

Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.

2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106187

RESUMO

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative region-associated microglia (PAM) in developing white matter and disease-associated microglia (DAM) prevalent in various neurodegenerative conditions. PAM and DAM share a similar core gene signature and other functional properties. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we report the generation of an inducible Cre driver line, Clec7a-CreERT2, designed to target PAM and DAM in the brain parenchyma. Utilizing this tool, we profile labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM/DAM gene expression. Through long-term tracking, we demonstrate surprising levels of plasticity in these microglial states. Lastly, we specifically depleted DAM in cuprizone-induced demyelination, revealing their roles in disease progression and recovery.

3.
J Neurosci ; 42(44): 8225-8236, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36163142

RESUMO

Phosphodiesterase (PDE) inhibitors have been safely and effectively used in the clinic and increase the concentration of intracellular cyclic nucleotides (cAMP/cGMP). These molecules activate downstream mediators, including the cAMP response element-binding protein (CREB), which controls neuronal excitability and growth responses. CREB gain of function enhances learning and allocates neurons into memory engrams. CREB also controls recovery after stroke. PDE inhibitors are linked to recovery from neural damage and to stroke recovery in specific sites within the brain. PDE2A is enriched in cortex. In the present study, we use a mouse cortical stroke model in young adult and aged male mice to test the effect of PDE2A inhibition on functional recovery, and on downstream mechanisms of axonal sprouting, tissue repair, and the functional connectivity of neurons in recovering cortex. Stroke causes deficits in use of the contralateral forelimb, loss of axonal projections in cortex adjacent to the infarct, and functional disconnection of neuronal networks. PDE2A inhibition enhances functional recovery, increases axonal projections in peri-infarct cortex, and, through two-photon in vivo imaging, enhances the functional connectivity of motor system excitatory neurons. PDE2A inhibition after stroke does not have an effect on other aspects of tissue repair, such as angiogenesis, gliogenesis, neurogenesis, and inflammatory responses. These data suggest that PDE2A inhibition is an effective therapeutic approach for stroke recovery in the rodent and that it simultaneously enhances connectivity in peri-infarct neuronal populations.SIGNIFICANCE STATEMENT Inhibition of PDE2A enhances motor recovery, axonal projections, and functional connectivity of neurons in peri-infarct tissue. This represents an avenue for a pharmacological therapy for stroke recovery.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Infarto , Neurônios Motores , Neurogênese , Inibidores de Fosfodiesterase/farmacologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores
5.
Transl Stroke Res ; 12(2): 303-315, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32378029

RESUMO

Stroke is the leading cause of adult disability. Recovery of function after stroke involves signaling events that are mediated by cAMP and cGMP pathways, such as axonal sprouting, neurogenesis, and synaptic plasticity. cAMP and cGMP are degraded by phosphodiesterases (PDEs), which are differentially expressed in brain regions. PDE10A is highly expressed in the basal ganglia/striatum. We tested a novel PDE10A inhibitor (TAK-063) for its effects on functional recovery. Stroke was produced in mice in the cortex or the striatum. Behavioral recovery was measured to 9 weeks. Tissue outcome measures included analysis of growth factor levels, angiogenesis, neurogenesis, gliogenesis, and inflammation. TAK-063 improved motor recovery after striatal stroke in a dose-related manner, but not in cortical stroke. Recovery of motor function correlated with increases in striatal brain-derived neurotrophic factor. TAK-063 treatment also increased motor system axonal connections. Stroke affects distinct brain regions, with each comprising different cellular and molecular elements. Inhibition of PDE10A improved recovery of function after striatal but not cortical stroke, consistent with its brain localization. This experiment is the first demonstration of brain region-specific enhanced functional recovery after stroke, and indicates that differential molecular signaling between brain regions can be exploited to improve recovery based on stroke subtype.


Assuntos
Diester Fosfórico Hidrolases , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/tratamento farmacológico
6.
Cell ; 176(5): 1143-1157.e13, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794775

RESUMO

We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores CCR5/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...