Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38355760

RESUMO

Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.

2.
FEBS J ; 291(1): 45-56, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811679

RESUMO

S-acylation is a covalent post-translational modification of proteins with fatty acids, achieved by enzymatic attachment via a labile thioester bond. This modification allows for dynamic control of protein properties and functions in association with cell membranes. This lipid modification regulates a substantial portion of the human proteome and plays an increasingly recognized role throughout the lifespan of affected proteins. Recent technical advancements have propelled the S-acylation field into a 'molecular era', unveiling new insights into its mechanistic intricacies and far-reaching implications. With a striking increase in the number of studies on this modification, new concepts are indeed emerging on the roles of S-acylation in specific cell biology processes and features. After a brief overview of the enzymes involved in S-acylation, this viewpoint focuses on the importance of S-acylation in the homeostasis, function, and coordination of integral membrane proteins. In particular, we put forward the hypotheses that S-acylation is a gatekeeper of membrane protein folding and turnover and a regulator of the formation and dynamics of membrane contact sites.


Assuntos
Lipoilação , Proteínas de Membrana , Humanos , Animais , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Acilação , Estágios do Ciclo de Vida , Processamento de Proteína Pós-Traducional
3.
Nat Commun ; 14(1): 7302, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952051

RESUMO

SARS-CoV-2 infection requires Spike protein-mediated fusion between the viral and cellular membranes. The fusogenic activity of Spike depends on its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to mere Spike transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zdhhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino-acid-long N-terminally extended protein with approx. 40 times higher Spike acylating activity, resulting in enhanced fusion of viruses with host cells. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis and pore-forming toxins, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to optimize it fusion glycoprotein.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Fusão de Membrana/fisiologia , Aciltransferases/genética
4.
Nat Commun ; 14(1): 264, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650170

RESUMO

The complex architecture of the endoplasmic reticulum (ER) comprises distinct dynamic features, many at the nanoscale, that enable the coexistence of the nuclear envelope, regions of dense sheets and a branched tubular network that spans the cytoplasm. A key player in the formation of ER sheets is cytoskeleton-linking membrane protein 63 (CLIMP-63). The mechanisms by which CLIMP-63 coordinates ER structure remain elusive. Here, we address the impact of S-acylation, a reversible post-translational lipid modification, on CLIMP-63 cellular distribution and function. Combining native mass-spectrometry, with kinetic analysis of acylation and deacylation, and data-driven mathematical modelling, we obtain in-depth understanding of the CLIMP-63 life cycle. In the ER, it assembles into trimeric units. These occasionally exit the ER to reach the plasma membrane. However, the majority undergoes S-acylation by ZDHHC6 in the ER where they further assemble into highly stable super-complexes. Using super-resolution microscopy and focused ion beam electron microscopy, we show that CLIMP-63 acylation-deacylation controls the abundance and fenestration of ER sheets. Overall, this study uncovers a dynamic lipid post-translational regulation of ER architecture.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Cinética , Retículo Endoplasmático/metabolismo , Acilação , Lipídeos
5.
Dev Cell ; 57(19): 2334-2346.e8, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174556

RESUMO

To promote infections, pathogens exploit host cell machineries such as structural elements of the plasma membrane. Studying these interactions and identifying molecular players are ideal for gaining insights into the fundamental biology of the host cell. Here, we used the anthrax toxin to screen a library of 1,500 regulatory, cell-surface, and membrane trafficking genes for their involvement in the intoxication process. We found that endoplasmic reticulum (ER)-Golgi-localized proteins TMED2 and TMED10 are required for toxin oligomerization at the plasma membrane of human cells, an essential step dependent on localization to cholesterol-rich lipid nanodomains. Biochemical, morphological, and mechanistic analyses showed that TMED2 and TMED10 are essential components of a supercomplex that operates the exchange of both cholesterol and ceramides at ER-Golgi membrane contact sites. Overall, this study of anthrax intoxication led to the discovery that lipid compositional remodeling at ER-Golgi interfaces fully controls the formation of functional membrane nanodomains at the cell surface.


Assuntos
Retículo Endoplasmático , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Vesicular , Membrana Celular/metabolismo , Ceramidas/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Nat Commun ; 13(1): 4913, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987910

RESUMO

The treatment of colorectal cancer (CRC) is an unmet medical need in absence of early diagnosis. Here, upon characterizing cancer-specific transposable element-driven transpochimeric gene transcripts (TcGTs) produced by this tumor in the SYSCOL cohort, we find that expression of the hominid-restricted retrogene POU5F1B through aberrant activation of a primate-specific endogenous retroviral promoter is a strong negative prognostic biomarker. Correlating this observation, we demonstrate that POU5F1B fosters the proliferation and metastatic potential of CRC cells. We further determine that POU5F1B, in spite of its phylogenetic relationship with the POU5F1/OCT4 transcription factor, is a membrane-enriched protein that associates with protein kinases and known targets or interactors as well as with cytoskeleton-related molecules, and induces intracellular signaling events and the release of trans-acting factors involved in cell growth and cell adhesion. As POU5F1B is an apparently non-essential gene only lowly expressed in normal tissues, and as POU5F1B-containing TcGTs are detected in other tumors besides CRC, our data provide interesting leads for the development of cancer therapies.


Assuntos
Neoplasias Colorretais , Genes Homeobox , Proteínas de Homeodomínio , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Filogenia
7.
Nat Commun ; 13(1): 2072, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440597

RESUMO

Peripheral membrane proteins (PMPs) associate with cellular membranes through post-translational modifications like S-palmitoylation. The Golgi apparatus is generally viewed as the transitory station where palmitoyl acyltransferases (PATs) modify PMPs, which are then transported to their ultimate destinations such as the plasma membrane (PM). However, little substrate specificity among the many PATs has been determined. Here we describe the inherent partitioning of Gαo - α-subunit of heterotrimeric Go proteins - to PM and Golgi, independent from Golgi-to-PM transport. A minimal code within Gαo N-terminus governs its compartmentalization and re-coding produces G protein versions with shifted localization. We establish the S-palmitoylation at the outer nuclear membrane assay ("SwissKASH") to probe substrate specificity of PATs in intact cells. With this assay, we show that PATs localizing to different membrane compartments display remarkable substrate selectivity, which is the basis for PMP compartmentalization. Our findings uncover a mechanism governing protein localization and establish the basis for innovative drug discovery.


Assuntos
Aciltransferases , Lipoilação , Aciltransferases/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico
8.
Elife ; 102021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913437

RESUMO

Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.


Assuntos
Aciltransferases/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Acilação , Aciltransferases/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Células HEK293 , Humanos , Células Jurkat/metabolismo , Microdomínios da Membrana/metabolismo , Proteína ORAI1/metabolismo , Enxofre/metabolismo , Linfócitos T/metabolismo
9.
Dev Cell ; 56(20): 2790-2807.e8, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34599882

RESUMO

SARS-CoV-2 virions are surrounded by a lipid bilayer that contains membrane proteins such as spike, responsible for target-cell binding and virus fusion. We found that during SARS-CoV-2 infection, spike becomes lipid modified, through the sequential action of the S-acyltransferases ZDHHC20 and 9. Particularly striking is the rapid acylation of spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics, and biochemical approaches, we show that this massive lipidation controls spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid-rich lipid nanodomains in the early Golgi, where viral budding occurs. Finally, S-acylation of spike allows the formation of viruses with enhanced fusion capacity. Our study points toward S-acylating enzymes and lipid biosynthesis enzymes as novel therapeutic anti-viral targets.


Assuntos
Acilação/fisiologia , Tratamento Farmacológico da COVID-19 , Lipídeos de Membrana/metabolismo , SARS-CoV-2/patogenicidade , Aciltransferases/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Humanos , Montagem de Vírus/fisiologia
10.
Front Cell Dev Biol ; 9: 626404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659252

RESUMO

The protein kinase Akt/PKB participates in a great variety of processes, including translation, cell proliferation and survival, as well as malignant transformation and viral infection. In the last few years, novel Akt posttranslational modifications have been found. However, how these modification patterns affect Akt subcellular localization, target specificity and, in general, function is not thoroughly understood. Here, we postulate and experimentally demonstrate by acyl-biotin exchange (ABE) assay and 3H-palmitate metabolic labeling that Akt is S-palmitoylated, a modification related to protein sorting throughout subcellular membranes. Mutating cysteine 344 into serine blocked Akt S-palmitoylation and diminished its phosphorylation at two key sites, T308 and T450. Particularly, we show that palmitoylation-deficient Akt increases its recruitment to cytoplasmic structures that colocalize with lysosomes, a process stimulated during autophagy. Finally, we found that cysteine 344 in Akt1 is important for proper its function, since Akt1-C344S was unable to support adipocyte cell differentiation in vitro. These results add an unexpected new layer to the already complex Akt molecular code, improving our understanding of cell decision-making mechanisms such as cell survival, differentiation and death.

11.
Nat Chem Biol ; 17(4): 438-447, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707782

RESUMO

Many biochemical reactions require controlled recruitment of proteins to membranes. This is largely regulated by posttranslational modifications. A frequent one is S-acylation, which consists of the addition of acyl chains and can be reversed by poorly understood acyl protein thioesterases (APTs). Using a panel of computational and experimental approaches, we dissect the mode of action of the major cellular thioesterase APT2 (LYPLA2). We show that soluble APT2 is vulnerable to proteasomal degradation, from which membrane binding protects it. Interaction with membranes requires three consecutive steps: electrostatic attraction, insertion of a hydrophobic loop and S-acylation by the palmitoyltransferases ZDHHC3 or ZDHHC7. Once bound, APT2 is predicted to deform the lipid bilayer to extract the acyl chain bound to its substrate and capture it in a hydrophobic pocket to allow hydrolysis. This molecular understanding of APT2 paves the way to understand the dynamics of APT2-mediated deacylation of substrates throughout the endomembrane system.


Assuntos
Membrana Celular/metabolismo , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/fisiologia , Acilação/fisiologia , Células HeLa , Humanos , Lipoilação/fisiologia , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteínas/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/genética
12.
Dev Cell ; 53(4): 418-430.e4, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32428455

RESUMO

Capillary morphogenesis gene 2 (CMG2/ANTXR2) is a cell surface receptor for both collagen VI and anthrax toxin. Biallelic loss-of-function mutations in CMG2 lead to a severe condition, hyaline fibromatosis syndrome (HFS). We have here dissected a network of dynamic interactions between CMG2 and various actin interactors and regulators, describing a different behavior from other extracellular matrix receptors. CMG2 binds talin, and thereby the actin cytoskeleton, only in its ligand-free state. Extracellular ligand binding leads to src-dependent talin release and recruitment of the actin cytoskeleton regulator RhoA and its effectors. These sequential interactions of CMG2 are necessary for the control of oriented cell division during fish development. Finally, we demonstrate that effective switching between talin and RhoA binding is required for the intracellular degradation of collagen VI in human fibroblasts, which explains why HFS mutations in the cytoskeleton-binding domain lead to dysregulation of extracellular matrix homeostasis.


Assuntos
Colágeno Tipo VI/metabolismo , Endocitose , Síndrome da Fibromatose Hialina/patologia , Receptores de Colágeno/metabolismo , Receptores de Peptídeos/metabolismo , Talina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Citoesqueleto/metabolismo , Feminino , Humanos , Síndrome da Fibromatose Hialina/genética , Síndrome da Fibromatose Hialina/metabolismo , Ligantes , Masculino , Mutação , Receptores de Colágeno/genética , Receptores de Peptídeos/genética , Talina/genética , Peixe-Zebra , Proteína rhoA de Ligação ao GTP/genética
14.
Biochem J ; 477(1): 285-303, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31872235

RESUMO

Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.


Assuntos
Aciltransferases/metabolismo , Gammainfluenzavirus/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Vírus da Influenza B/metabolismo , Influenza Humana/virologia , Células A549 , Acilação , Animais , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino
15.
Methods Mol Biol ; 2009: 111-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31152399

RESUMO

Proteins can be radiolabeled either during synthesis, typically using 35S-cysteine/methionine (35S-Cys/Met), or after synthesis, by adding a radiolabeled posttranslational modification. Here we describe how protein S-palmitoylation, and its dynamics, can be monitored by 3H-palmitate labeling and how the importance of S-palmitoylation in protein biogenesis and turnover can be investigated using 35S-Cys/Met pulse-chase metabolic labeling. Proteins frequently have multiple palmitoylation sites. The importance thereof on the design and interpretation of metabolic labeling experiments is discussed.


Assuntos
Marcação por Isótopo/métodos , Lipoilação , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Radioisótopos de Enxofre , Linhagem Celular Transformada , Humanos
16.
PLoS Pathog ; 14(12): e1007471, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532200

RESUMO

Hepatitis E virus (HEV) is a positive-strand RNA virus encoding 3 open reading frames (ORF). HEV ORF3 protein is a small, hitherto poorly characterized protein involved in viral particle secretion and possibly other functions. Here, we show that HEV ORF3 protein forms membrane-associated oligomers. Immunoblot analyses of ORF3 protein expressed in cell-free vs. cellular systems suggested a posttranslational modification. Further analyses revealed that HEV ORF3 protein is palmitoylated at cysteine residues in its N-terminal region, as corroborated by 3H-palmitate labeling, the investigation of cysteine-to-alanine substitution mutants and treatment with the palmitoylation inhibitor 2-bromopalmitate (2-BP). Abrogation of palmitoylation by site-directed mutagenesis or 2-BP treatment altered the subcellular localization of ORF3 protein, reduced the stability of the protein and strongly impaired the secretion of infectious particles. Moreover, selective membrane permeabilization coupled with immunofluorescence microscopy revealed that HEV ORF3 protein is entirely exposed to the cytosolic side of the membrane, allowing to propose a model for its membrane topology and interactions required in the viral life cycle. In conclusion, palmitoylation determines the subcellular localization, membrane topology and function of HEV ORF3 protein in the HEV life cycle.


Assuntos
Hepatite E/virologia , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Linhagem Celular , Vírus da Hepatite E/patogenicidade , Humanos , Lipoilação
17.
Nature ; 559(7713): 269-273, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973723

RESUMO

Aberrant activation of innate immune pathways is associated with a variety of diseases. Progress in understanding the molecular mechanisms of innate immune pathways has led to the promise of targeted therapeutic approaches, but the development of drugs that act specifically on molecules of interest remains challenging. Here we report the discovery and characterization of highly potent and selective small-molecule antagonists of the stimulator of interferon genes (STING) protein, which is a central signalling component of the intracellular DNA sensing pathway1,2. Mechanistically, the identified compounds covalently target the predicted transmembrane cysteine residue 91 and thereby block the activation-induced palmitoylation of STING. Using these inhibitors, we show that the palmitoylation of STING is essential for its assembly into multimeric complexes at the Golgi apparatus and, in turn, for the recruitment of downstream signalling factors. The identified compounds and their derivatives reduce STING-mediated inflammatory cytokine production in both human and mouse cells. Furthermore, we show that these small-molecule antagonists attenuate pathological features of autoinflammatory disease in mice. In summary, our work uncovers a mechanism by which STING can be inhibited pharmacologically and demonstrates the potential of therapies that target STING for the treatment of autoinflammatory disease.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Cisteína/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Lipoilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/metabolismo
18.
Elife ; 62017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28826475

RESUMO

S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC palmitoyltransferase family is still limited. Here we show that human ZDHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, ZDHHC16, revealing the first palmitoylation cascade. The combination of site specific mutagenesis of the three ZDHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the eight differentially palmitoylated ZDHHC6 species. We found that species rapidly interconvert through the action of ZDHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly tune its ZDHHC6 activity.


Assuntos
Aciltransferases/metabolismo , Lipoilação , Aciltransferases/química , Cisteína/metabolismo , Degradação Associada com o Retículo Endoplasmático , Células HeLa , Humanos , Modelos Biológicos , Transporte Proteico , Proteólise , Tioléster Hidrolases/metabolismo , Domínios de Homologia de src
19.
Nat Commun ; 8: 15861, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604699

RESUMO

Loss-of-function mutations in capillary morphogenesis gene 2 (CMG2/ANTXR2), a transmembrane surface protein, cause hyaline fibromatosis syndrome (HFS), a severe genetic disorder that is characterized by large subcutaneous nodules, gingival hypertrophy and severe painful joint contracture. Here we show that CMG2 is an important regulator of collagen VI homoeostasis. CMG2 loss of function promotes accumulation of collagen VI in patients, leading in particular to nodule formation. Similarly, collagen VI accumulates massively in uteri of Antxr2-/- mice, which do not display changes in collagen gene expression, and leads to progressive fibrosis and sterility. Crossing Antxr2-/- with Col6a1-/- mice leads to restoration of uterine structure and reversion of female infertility. We also demonstrate that CMG2 may act as a signalling receptor for collagen VI and mediates its intracellular degradation.


Assuntos
Colágeno Tipo VI/metabolismo , Síndrome da Fibromatose Hialina/metabolismo , Receptores de Peptídeos/fisiologia , Animais , Feminino , Fibrose/metabolismo , Fibrose/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Knockout , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Útero/metabolismo , Útero/patologia
20.
Elife ; 52016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27751231

RESUMO

Many membrane proteins fold inefficiently and require the help of enzymes and chaperones. Here we reveal a novel folding assistance system that operates on membrane proteins from the cytosolic side of the endoplasmic reticulum (ER). We show that folding of the Wnt signaling coreceptor LRP6 is promoted by ubiquitination of a specific lysine, retaining it in the ER while avoiding degradation. Subsequent ER exit requires removal of ubiquitin from this lysine by the deubiquitinating enzyme USP19. This ubiquitination-deubiquitination is conceptually reminiscent of the glucosylation-deglucosylation occurring in the ER lumen during the calnexin/calreticulin folding cycle. To avoid infinite futile cycles, folded LRP6 molecules undergo palmitoylation and ER export, while unsuccessfully folded proteins are, with time, polyubiquitinated on other lysines and targeted to degradation. This ubiquitin-dependent folding system also controls the proteostasis of other membrane proteins as CFTR and anthrax toxin receptor 2, two poor folders involved in severe human diseases.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Dobramento de Proteína , Ubiquitina/metabolismo , Linhagem Celular , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...