Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Biol Chem ; 293(27): 10810-10824, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769320

RESUMO

It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Genes Ligados ao Cromossomo X , Marcadores Genéticos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Diferenciação Celular , Criança , Cristalografia por Raios X , Células-Tronco Embrionárias/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Deficiência Intelectual/enzimologia , Deficiência Intelectual/patologia , Masculino , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Conformação Proteica , Transdução de Sinais
2.
Lancet Neurol ; 13(1): 44-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24291220

RESUMO

BACKGROUND: Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. METHODS: Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. FINDINGS: 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis. INTERPRETATION: Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24. FUNDING: US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.


Assuntos
Proteínas de Transporte/genética , Anormalidades Craniofaciais/genética , Exoma/genética , Deformidades Congênitas da Mão/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual/genética , Internacionalidade , Unhas Malformadas/genética , Fenótipo , Análise de Sequência de DNA/métodos , Adolescente , Proteínas de Transporte/química , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico , Feminino , Proteínas Ativadoras de GTPase , Deformidades Congênitas da Mão/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Proteínas de Membrana , Unhas Malformadas/diagnóstico , Proteínas do Tecido Nervoso , Adulto Jovem
3.
Sultan Qaboos Univ Med J ; 13(2): 306-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23862039

RESUMO

We report here a 4-year-old boy with global developmental delay who was referred for karyotyping and fragile X studies. A small interstitial deletion on chromosome 7 at band 7q21 was detected in all cells examined. Subsequent molecular karyotype analysis gave the more detailed result of a 6.3 Mb heterozygous deletion involving the interstitial chromosome region 7q21.11. In this relatively gene-poor region, the presynaptic cytomatrix protein, Piccolo (PCLO) gene appears to be the most likely candidate for copy number loss leading to a clinical phenotype. G-banded chromosome analysis of the parents showed this deletion was inherited from the father. Molecular karyotype analysis of the father's genome confirmed that it was the same deletion as that seen in the son; however, the father did not share the severity of his son's phenotype. This cytogenetically-visible deletion may represent another example of a chromosomal rearrangement conferring a variable phenotype on different family members.

4.
Sultan Qaboos Univ Med J ; 13(2): 311-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23862040

RESUMO

Female carriers of balanced translocations involving an X chromosome and an autosome offer genetic counselling challenges. This is in view of the number of possible meiotic outcomes, but also due to the impact of X chromosome-localised genes that are no longer subject to gene silencing through the X chromosome inactivation centre. We present a case where delineation of the extent of X chromosome-localised genes on the derivative autosome using molecular karyotyping offers critical information in the context of genetic counselling.

5.
Sultan Qaboos Univ Med J ; 13(1): 80-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23573386

RESUMO

OBJECTIVES: Thanatophoric dysplasia (TD) is the most common form of lethal skeletal dysplasia. It is primarily an autosomal dominant disorder and is characterised by macrocephaly, a narrow thorax, short ribs, brachydactyly, and hypotonia. In addition to these core phenotypic features, TD type I involves micromelia with bowed femurs, while TD type II is characterised by micromelia with straight femurs and a moderate to severe clover-leaf deformity of the skull. Mutations in the FGFR3 gene are responsible for all cases of TD reported to date. The objective of the study here was to delineate further the mutational spectrum responsible for TD. METHODS: Conventional polymerase chain reaction (PCR), allele-specific PCR, and sequence analysis were used to identify FGFR3 gene mutations in a fetus with a lethal skeletal dysplasia consistent with TD, which was detected during a routine antenatal ultrasound examination. RESULTS: In this report we describe the identification of two de novo missense mutations in cis in the FGFR3 gene (p.Asn540Lys and p.Val555Met) in a fetus displaying phenotypic features consistent with TD. CONCLUSION: This is the second description of a case of TD occurring as a result of double missense FGFR3 gene mutations, suggesting that the spectrum of mutations involved in the pathogenesis of TD may be broader than previously recognised.

6.
Neurogenetics ; 14(2): 113-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456229

RESUMO

Emery-Dreifuss muscular dystrophy (EDMD) is characterised by early-onset joint contractures, progressive muscular weakness and wasting and late-onset cardiac disease. The more common X-linked recessive form of EDMD is caused by mutations in either EMD (encoding emerin) or FHL1 (encoding four and a half LIM domains 1), while mutations in LMNA (encoding lamin A/C), SYNE1 (encoding nesprin-1) and SYNE2 (encoding nesprin-2) lead to autosomal dominant forms of the condition. Here, we identify a three-generation family with an extended EDMD phenotype due to a novel indel mutation in FHL1 that differentially affects the relative expression of the three known transcript isoforms produced from this locus. The additional phenotypic manifestations in this family-proportionate short stature, facial dysmorphism, pulmonary valvular stenosis, thoracic scoliosis, brachydactyly, pectus deformities and genital abnormalities-are reminiscent of phenotypes seen with dysregulated Ras-mitogen-activated protein kinase (RAS-MAPK) signalling [Noonan syndrome (NS) and related disorders]. The misexpression of FHL1 transcripts precipitated by this mutation, together with the role of FHL1 in the regulation of RAS-MAPK signalling, suggests that this mutation confers a complex phenotype through both gain- and loss-of-function mechanisms. This indel mutation in FHL1 broadens the spectrum of FHL1-related disorders and implicates it in the pathogenesis of NS spectrum disorders.


Assuntos
Mutação INDEL/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia , Linhagem , Fenótipo , Isoformas de Proteínas/genética
7.
Eur J Med Genet ; 56(3): 163-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23279911

RESUMO

The increased use of array-CGH and SNP-arrays for genetic diagnosis has led to the identification of new microdeletion/microduplication syndromes and enabled genotype-phenotype correlations to be made. In this study, nine patients with 9q21 deletions were investigated and compared with four previously Decipher reported patients. Genotype-phenotype comparisons of 13 patients revealed several common major characteristics including significant developmental delay, epilepsy, neuro-behavioural disorders and recognizable facial features including hypertelorism, feature-less philtrum, and a thin upper lip. The molecular investigation identified deletions with different breakpoints and of variable lengths, but the 750 kb smallest overlapping deleted region includes four genes. Among these genes, RORB is a strong candidate for a neurological phenotype. To our knowledge, this is the first published report of 9q21 microdeletions and our observations strongly suggest that these deletions are responsible for a new genetic syndrome characterised by mental retardation with speech delay, epilepsy, autistic behaviour and moderate facial dysmorphy.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Microanálise por Sonda Eletrônica , Feminino , Estudos de Associação Genética , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular , Cariótipo , Masculino , Análise em Microsséries , Proteínas de Neoplasias/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pró-Proteína Convertases/genética , Proteínas/genética , Serina Endopeptidases/genética , Canais de Cátion TRPM/genética
8.
Clin Endocrinol (Oxf) ; 78(4): 545-50, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22909003

RESUMO

BACKGROUND: NR5A1 loss-of-function mutations are increasingly found to be the cause of 46,XY disorders of sex development (DSD). OBJECTIVE: To determine the presence of NR5A1 mutations in an Australasian cohort of 17 46,XY DSD patients with presumed androgen insensitivity syndrome (AIS) who were negative for androgen receptor gene (AR) mutation. DESIGN: Exons 2-7 of NR5A1 were PCR amplified and sequenced. Gene expression and cellular localization studies were performed on a novel NR5A1 variant c.74A>G (p.Y25C) identified in this study. RESULTS: We identified one novel mutation, c.74A>G (p.Y25C) in a patient characterized by penoscrotal hypospadias with bifid scrotum. He had elevated testosterone and gonadotropins in early infancy. Functional analysis of p.Y25C in vitro demonstrated reduced transcriptional activation by SF-1 and partially impaired nuclear localization in a proportion of transfected human adrenal NCI-H295R cells. CONCLUSION: This is the first reported case of a DSD patient with a NR5A1 mutation and elevated testosterone levels. Our finding supports evaluation of NR5A1 mutations in 46,XY DSD patients with a range of testosterone levels.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/sangue , Transtorno 46,XY do Desenvolvimento Sexual/genética , Fator Esteroidogênico 1/genética , Testosterona/sangue , Sequência de Aminoácidos , Australásia , Sequência de Bases , Estudos de Coortes , Humanos , Recém-Nascido , Dados de Sequência Molecular , Mutação de Sentido Incorreto/fisiologia , Regulação para Cima
9.
Pediatr Dermatol ; 30(4): 476-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23131169

RESUMO

A boy was born with multiple anomalies, including right hemifacial microsomia, eye abnormalities, syndactyly, right hand ectrodactyly, hypoplastic nails, omphalocele, bladder exstrophy, renal dilatation, and splayed symphysis pubis. The skin was also abnormal, with atrophic skin plaques and areas of telangiectasia along the lines of Blaschko. The karyotype was 47,XXY (Klinefelter syndrome). He was found to have a heterozygous mutation in the PORCN gene. He exhibited the classical features of focal dermal hypoplasia. Fewer than 15% of reported cases are male when it is thought to be due to postzygotic mutation and thus mosaic. This is the first reported boy to have heterozygous mutation for Goltz syndrome who survived due to the extra X chromosome.


Assuntos
Anormalidades Múltiplas/genética , Hipoplasia Dérmica Focal/genética , Síndrome de Klinefelter/genética , Deformidades Congênitas dos Membros/genética , Proteínas de Membrana/genética , Aciltransferases , Heterozigoto , Humanos , Lactente , Masculino
10.
Hum Mol Genet ; 22(1): 1-17, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22949511

RESUMO

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.


Assuntos
Artrogripose/genética , Colágeno Tipo I/metabolismo , Genes Recessivos , Lisina/metabolismo , Mutação , Osteogênese Imperfeita/genética , Proteínas de Ligação a Tacrolimo/genética , Feminino , Humanos , Hidroxilação , Masculino , Processamento de Proteína Pós-Traducional
11.
Case Rep Pediatr ; 2012: 459602, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23198235

RESUMO

Insertional translocations in which a duplicated region of one chromosome is inserted into another chromosome are very rare. We report a 16.5-year-old girl with a terminal duplication at 9q34.3 of paternal origin inserted into 19q13.4. Chromosomal analysis revealed the karyotype 46,XX,der(19)ins(19;9)(q13.4;q34.3q34.3)pat. Cytogenetic microarray analysis (CMA) identified a ~2.3Mb duplication of 9q34.3 → qter, which was confirmed by Fluorescence in situ hybridisation (FISH). The duplication at 9q34.3 is the smallest among the cases reported so far. The proband exhibits similar clinical features to those previously reported cases with larger duplication events.

12.
Am J Med Genet A ; 158A(11): 2733-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023959

RESUMO

Meier-Gorlin syndrome (MGS) is a rare autosomal recessive disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recently, mutations in the ORC1, ORC4, ORC6, CDT1, and CDC6 genes, encoding components of the pre-replication complex, have been identified. This complex is essential for DNA replication and therefore mutations are expected to impair cell proliferation and consequently could globally reduce growth. However, detailed growth characteristics of MGS patients have not been reported, and so this is addressed here through study of 45 MGS patients, the largest cohort worldwide. Here, we report that growth velocity (length) is impaired in MGS during pregnancy and first year of life, but, thereafter, height increases in paralleled normal reference centiles, resulting in a mean adult height of -4.5 standard deviations (SD). Height is dependent on ethnic background and underlying molecular cause, with ORC1 and ORC4 mutations causing more severe short stature and microcephaly. Growth hormone therapy (n = 9) was generally ineffective, though in two patients with significantly reduced IGF1 levels, growth was substantially improved by GH treatment, with 2SD and 3.8 SD improvement in height. Growth parameters for monitoring growth in future MGS patients are provided and as well we highlight that growth is disproportionately affected in certain structures, with growth related minor genital abnormalities (42%) and mammary hypoplasia (100%) frequently present, in addition to established effects on ears and patellar growth.


Assuntos
Gráficos de Crescimento , Transtornos do Crescimento/diagnóstico , Micrognatismo/diagnóstico , Desenvolvimento Sexual , Proteínas de Ciclo Celular/genética , Pré-Escolar , Estudos de Coortes , Microtia Congênita , Orelha/anormalidades , Feminino , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/genética , Hormônio do Crescimento Humano/sangue , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Lactente , Masculino , Micrognatismo/tratamento farmacológico , Micrognatismo/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Patela/anormalidades , Desenvolvimento Sexual/genética , Anormalidades Urogenitais
13.
Case Rep Genet ; 2012: 172408, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23074684

RESUMO

The contactin-associated protein-like 2 (CNTNAP2) gene is highly expressed in the frontal lobe circuits in the developing human brain. Mutations in this gene have been associated with several neurodevelopmental disorders such as autism and specific language impairment. Here we describe a 450 kb deletion within the CNTNAP2 gene that is maternally inherited in two male siblings, but with a variable clinical phenotype. This variability is described in the context of a limited number of other cases reported in the literature. The in-frame intragenic deletion removes a critical domain of the CNTNAP2 protein, and this case also highlights the challenges of correlating genotype and phenotype.

14.
Eur J Hum Genet ; 20(6): 598-606, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22333897

RESUMO

Meier-Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, patellar aplasia/hypoplasia, and short stature. Recently, mutations in five genes from the pre-replication complex (ORC1, ORC4, ORC6, CDT1, and CDC6), crucial in cell-cycle progression and growth, were identified in individuals with MGS. Here, we report on genotype-phenotype studies in 45 individuals with MGS (27 females, 18 males; age 3 months-47 years). Thirty-five individuals had biallelic mutations in one of the five causative pre-replication genes. No homozygous or compound heterozygous null mutations were detected. In 10 individuals, no definitive molecular diagnosis was made. The triad of microtia, absent/hypoplastic patellae, and short stature was observed in 82% of individuals with MGS. Additional frequent clinical features were mammary hypoplasia (100%) and abnormal genitalia (42%; predominantly cryptorchidism and hypoplastic labia minora/majora). One individual with ORC1 mutations only had short stature, emphasizing the highly variable clinical spectrum of MGS. Individuals with ORC1 mutations had significantly shorter stature and smaller head circumferences than individuals from other gene categories. Furthermore, compared with homozygous missense mutations, compound heterozygous mutations appeared to have a more severe effect on phenotype, causing more severe growth retardation in ORC4 and more frequently pulmonary emphysema in CDT1. A lethal phenotype was seen in four individuals with compound heterozygous ORC1 and CDT1 mutations. No other clear genotype-phenotype association was observed. Growth hormone and estrogen treatment may be of some benefit, respectively, to growth retardation and breast hypoplasia, though further studies in this patient group are needed.


Assuntos
Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Adolescente , Adulto , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Microtia Congênita , Orelha/anormalidades , Feminino , Estudos de Associação Genética , Transtornos do Crescimento/metabolismo , Humanos , Lactente , Masculino , Micrognatismo/metabolismo , Pessoa de Meia-Idade , Patela/anormalidades , Patela/metabolismo
15.
Hum Mutat ; 33(1): 64-72, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22045651

RESUMO

Pitt-Hopkins syndrome (PTHS), characterized by severe intellectual disability and typical facial gestalt, is part of the clinical spectrum of Rett-like syndromes. TCF4, encoding a basic helix-loop-helix (bHLH) transcription factor, was identified as the disease-causing gene with de novo molecular defects. While PTHS appears to be a recognizable clinical entity, it seems to remain underdiagnosed, especially when facial gestalt is less typical. With the aim to facilitate the diagnosis of PTHS and to increase its rate and specificity, we have investigated 33 novel patients and defined a Clinical Diagnosis Score. Analysis of 112 individuals (79 previously reported and 33 novel patients) allowed us to delineate the TCF4 mutational spectrum, with 40% point mutations, 30% small deletions/insertions, and 30% deletions. Most of these were private mutations and generated premature stop codons. Missense mutations were localized in the bHLH domain, which is a mutational hotspot. No obvious difference was observed between patients harboring truncating, missense mutations, or deletions, further supporting TCF4 haploinsufficiency as the molecular mechanism underlying PTHS. In this study, we have summarized the current knowledge of TCF4 molecular pathology, reported all the mutations in the TCF4 database (http://www.LOVD.nl/TCF4), and present a novel and comprehensive diagnostic strategy for PTHS.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cromossomos Humanos Par 18/genética , Hiperventilação/diagnóstico , Deficiência Intelectual/diagnóstico , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Cromossomos Humanos Par 18/química , Bases de Dados Genéticas , Fácies , Feminino , Estudos de Associação Genética , Variação Genética , Genótipo , Haploinsuficiência , Haplótipos , Humanos , Hiperventilação/genética , Lactente , Deficiência Intelectual/genética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Estrutura Terciária de Proteína , Deleção de Sequência , Inversão de Sequência , Índice de Gravidade de Doença , Fator de Transcrição 4
16.
Gene ; 486(1-2): 37-40, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21756987

RESUMO

Pseudotrisomy 13 syndrome is characterised by holoprosencephaly with or without polydactyly, but with a normal karyotype. The genetic cause of this syndrome remains unclear, but it is thought to be autosomal recessive. In order to identify possible candidate genes, we identified regions of homozygosity in the DNA of an affected foetus, which was the seventh pregnancy of a healthy non-consanguineous Cook Island Maori couple; this ethnic group derives from a small founder population. Several large regions of homozygosity were identified using a high density array. We excluded two candidate genes that lay within these regions, and suggest that Pseudotrisomy 13 syndrome might not be monogenic and that a larger cohort of patients should be analysed using high density dosage/SNP arrays as well as whole exome sequencing in order to clarify the genetic underpinning of this rare syndrome.


Assuntos
Macrossomia Fetal/genética , Deformidades Congênitas da Mão/genética , Holoprosencefalia/genética , Polidactilia/genética , Trissomia/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 13/genética , Feminino , Macrossomia Fetal/diagnóstico , Genes Recessivos , Deformidades Congênitas da Mão/diagnóstico , Holoprosencefalia/diagnóstico , Homozigoto , Humanos , Cariotipagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polidactilia/diagnóstico , Polimorfismo de Nucleotídeo Único , Gravidez , Trissomia/diagnóstico
17.
Orphanet J Rare Dis ; 6: 37, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21658220

RESUMO

BACKGROUND: The TRPV4 gene encodes a calcium-permeable ion-channel that is widely expressed, responds to many different stimuli and participates in an extraordinarily wide range of physiologic processes. Autosomal dominant brachyolmia, spondylometaphyseal dysplasia Kozlowski type (SMDK) and metatropic dysplasia (MD) are currently considered three distinct skeletal dysplasias with some shared clinical features, including short stature, platyspondyly, and progressive scoliosis. Recently, TRPV4 mutations have been found in patients diagnosed with these skeletal phenotypes. METHODS AND RESULTS: We critically analysed the clinical and radiographic data on 26 subjects from 21 families, all of whom had a clinical diagnosis of one of the conditions described above: 15 with MD; 9 with SMDK; and 2 with brachyolmia. We sequenced TRPV4 and identified 9 different mutations in 22 patients, 4 previously described, and 5 novel. There were 4 mutation-negative cases: one with MD and one with SMDK, both displaying atypical clinical and radiographic features for these diagnoses; and two with brachyolmia, who had isolated spine changes and no metaphyseal involvement. CONCLUSIONS: Our data suggest the TRPV4 skeletal dysplasias represent a continuum of severity with areas of phenotypic overlap, even within the same family. We propose that AD brachyolmia lies at the mildest end of this spectrum and, since all cases described with this diagnosis and TRPV4 mutations display metaphyseal changes, we suggest that it is not a distinct entity but represents the mildest phenotypic expression of SMDK.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Mutação , Canais de Cátion TRPV/genética , Adulto , Doenças do Desenvolvimento Ósseo/classificação , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Pré-Escolar , Nanismo/diagnóstico por imagem , Nanismo/genética , Nanismo/patologia , Família , Feminino , Humanos , Lactente , Masculino , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Fenótipo , Radiografia
18.
Am J Hum Genet ; 88(4): 508-15, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21473986

RESUMO

Defects in cilia formation and function result in a range of human skeletal and visceral abnormalities. Mutations in several genes have been identified to cause a proportion of these disorders, some of which display genetic (locus) heterogeneity. Mouse models are valuable for dissecting the function of these genes, as well as for more detailed analysis of the underlying developmental defects. The short-rib polydactyly (SRP) group of disorders are among the most severe human phenotypes caused by cilia dysfunction. We mapped the disease locus from two siblings affected by a severe form of SRP to 2p24, where we identified an in-frame homozygous deletion of exon 5 in WDR35. We subsequently found compound heterozygous missense and nonsense mutations in WDR35 in an independent second case with a similar, severe SRP phenotype. In a mouse mutation screen for developmental phenotypes, we identified a mutation in Wdr35 as the cause of midgestation lethality, with abnormalities characteristic of defects in the Hedgehog signaling pathway. We show that endogenous WDR35 localizes to cilia and centrosomes throughout the developing embryo and that human and mouse fibroblasts lacking the protein fail to produce cilia. Through structural modeling, we show that WDR35 has strong homology to the COPI coatamers involved in vesicular trafficking and that human SRP mutations affect key structural elements in WDR35. Our report expands, and sheds new light on, the pathogenesis of the SRP spectrum of ciliopathies.


Assuntos
Mutação , Proteínas/genética , Síndrome de Costela Curta e Polidactilia/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cílios/genética , Cílios/fisiologia , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Códon sem Sentido , Proteínas do Citoesqueleto , Desenvolvimento Embrionário/genética , Feminino , Proteínas Hedgehog , Heterozigoto , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Mutantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Fenótipo , Gravidez , Proteínas/química , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Síndrome de Costela Curta e Polidactilia/embriologia , Síndrome de Costela Curta e Polidactilia/fisiopatologia
19.
Nat Genet ; 43(4): 303-5, 2011 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-21378985

RESUMO

We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.


Assuntos
Síndrome de Hajdu-Cheney/genética , Mutação , Receptor Notch2/genética , Alelos , Sequência de Bases , Análise Mutacional de DNA , DNA Complementar/genética , Éxons , Feminino , Síndrome de Hajdu-Cheney/metabolismo , Síndrome de Hajdu-Cheney/patologia , Humanos , Masculino , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Linhagem , Sinais Direcionadores de Proteínas/genética , Receptor Notch2/metabolismo
20.
Nat Genet ; 43(4): 356-9, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21358632

RESUMO

Meier-Gorlin syndrome (ear, patella and short-stature syndrome) is an autosomal recessive primordial dwarfism syndrome characterized by absent or hypoplastic patellae and markedly small ears¹â»³. Both pre- and post-natal growth are impaired in this disorder, and although microcephaly is often evident, intellect is usually normal in this syndrome. We report here that individuals with this disorder show marked locus heterogeneity, and we identify mutations in five separate genes: ORC1, ORC4, ORC6, CDT1 and CDC6. All of these genes encode components of the pre-replication complex, implicating defects in replication licensing as the cause of a genetic syndrome with distinct developmental abnormalities.


Assuntos
Mutação , Complexo de Reconhecimento de Origem/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/genética , Microtia Congênita , Primers do DNA/genética , Orelha/anormalidades , Orelha/patologia , Feminino , Mutação da Fase de Leitura , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Haplótipos , Humanos , Masculino , Micrognatismo/genética , Micrognatismo/patologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Patela/anormalidades , Patela/patologia , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...