Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504345

RESUMO

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias , Humanos , Animais , Macaca mulatta/genética , Macaca mulatta/metabolismo , Proteína 1 Homóloga a MutL/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Epigênese Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/genética
2.
Gut Microbes ; 14(1): 2081474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704681

RESUMO

Anti-SSA/Ro antibodies, while strongly linked to fetal cardiac injury and neonatal rash, can associate with a spectrum of disease in the mother, ranging from completely asymptomatic to overt Systemic Lupus Erythematosus (SLE) or Sjögren's Syndrome (SS). This study was initiated to test the hypothesis that the microbiome, influenced in part by genetics, contributes to disease state. The stool microbiome of healthy controls (HC) was compared to that of anti-SSA/Ro positive women whose children had neonatal lupus. At the time of sampling, these women were either asymptomatic (Asym), had minor rheumatic symptoms or signs considered as an undifferentiated autoimmune syndrome (UAS), or were diagnosed with SLE or SS. Differences in microbial relative abundances among these three groups were tested assuming an ordering in clinical severity (HC

Assuntos
Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Criança , Disbiose , Feminino , Humanos , Recém-Nascido , Lúpus Eritematoso Sistêmico/congênito , Lúpus Eritematoso Sistêmico/genética , Mães , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/genética
3.
Front Immunol ; 13: 954984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591257

RESUMO

Introduction: Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods: We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results: PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion: Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.


Assuntos
Hemofilia A , Células-Tronco Mesenquimais , Feminino , Humanos , Gravidez , Hemofilia A/terapia , Fator VIII , Células Endoteliais/metabolismo , Placenta/metabolismo , Células-Tronco Mesenquimais/metabolismo
4.
Genes (Basel) ; 12(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34946847

RESUMO

Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene-drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention.


Assuntos
Metilação de DNA/genética , Doenças em Gêmeos/genética , Interferons/genética , Lúpus Eritematoso Sistêmico/genética , Ácidos Nucleicos/genética , Transdução de Sinais/genética , Gêmeos Monozigóticos/genética , DNA/genética , Sistemas de Liberação de Medicamentos/métodos , Epigenômica/métodos , Feminino , Técnicas Genéticas , Humanos , Regiões Promotoras Genéticas/genética
5.
Arthritis Res Ther ; 23(1): 290, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847931

RESUMO

BACKGROUND: We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-established genetic risk alleles on transcription at single-cell resolution. METHODS: Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations (CD14++CD16- CL and CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the within-person correlations observed, and eQTLs were compared between cell types and risk alleles. RESULTS: The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 expression pattern in public data sets. CONCLUSIONS: We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function.


Assuntos
Lúpus Eritematoso Sistêmico , Locos de Características Quantitativas , Alelos , Predisposição Genética para Doença/genética , Humanos , Lúpus Eritematoso Sistêmico/genética , Monócitos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
6.
Mol Metab ; 54: 101342, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563731

RESUMO

OBJECTIVE: Identify and characterize circulating metabolite profiles associated with adiposity to inform precision medicine. METHODS: Untargeted plasma metabolomic profiles in the Insulin Resistance Atherosclerosis Family Study (IRASFS) Mexican American cohort (n = 1108) were analyzed for association with anthropometric (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, WHR) and computed tomography measures (visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; visceral-to-subcutaneous ratio, VSR) of adiposity. Genetic data, inclusive of genome-wide array-based genotyping, whole exome sequencing (WES) and whole genome sequencing (WGS), were evaluated to identify the genetic contributors. Phenotypic and genetic association signals were replicated across ancestries. Transcriptomic data were analyzed to explore the relationship between genetic and metabolomic data. RESULTS: A partially characterized metabolite, tentatively named metabolonic lactone sulfate (X-12063), was consistently associated with BMI, WC, WHR, VAT, and SAT in IRASFS Mexican Americans (PMA <2.02 × 10-27). Trait associations were replicated in IRASFS African Americans (PAA < 1.12 × 10-07). Expanded analyses revealed associations with multiple phenotypic measures of cardiometabolic health, e.g. insulin sensitivity (SI), triglycerides (TG), diastolic blood pressure (DBP) and plasminogen activator inhibitor-1 (PAI-1) in both ancestries. Metabolonic lactone sulfate levels were heritable (h2 > 0.47), and a significant genetic signal at the ZSCAN25/CYP3A5 locus (PMA = 9.00 × 10-41, PAA = 2.31 × 10-10) was observed, highlighting a putative functional variant (rs776746, CYP3A5∗3). Transcriptomic analysis in the African American Genetics of Metabolism and Expression (AAGMEx) cohort supported the association of CYP3A5 with metabolonic lactone sulfate levels (PFDR = 6.64 × 10-07). CONCLUSIONS: Variant rs776746 is associated with a decrease in the transcript levels of CYP3A5, which in turn is associated with increased metabolonic lactone sulfate levels and poor cardiometabolic health.


Assuntos
Doenças Cardiovasculares/metabolismo , Lactonas/metabolismo , Obesidade/metabolismo , Sulfatos/metabolismo , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Am J Nephrol ; 52(5): 378-387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34098564

RESUMO

INTRODUCTION: Patients with ADTKD-MUC1 have one allele producing normal mucin-1 (MUC1) and one allele producing mutant MUC1, which remains intracellular. We hypothesized that ADTKD-MUC1 patients, who have only 1 secretory-competent wild-type MUC1 allele, should exhibit decreased plasma mucin-1 (MUC1) levels. To test this hypothesis, we repurposed the serum CA15-3 assay used to measure MUC1 in breast cancer to measure plasma MUC1 levels in ADTKD-MUC1. METHODS: This cross-sectional study analyzed CA15-3 levels in a reference population of 6,850 individuals, in 85 individuals with ADTKD-MUC1, and in a control population including 135 individuals with ADTKD-UMOD and 114 healthy individuals. RESULTS: Plasma CA15-3 levels (mean ± standard deviation) were 8.6 ± 4.3 U/mL in individuals with ADTKD-MUC1 and 14.6 ± 5.6 U/mL in controls (p < 0.001). While there was a significant difference in mean CA15-3 levels, there was substantial overlap between the 2 groups. Plasma CA15-3 levels were <5 U/mL in 22% of ADTKD-MUC1 patients, in 0/249 controls, and in 1% of the reference population. Plasma CA15-3 levels were >20 U/mL in 1/85 ADTKD-MUC1 patients, in 18% of control individuals, and in 25% of the reference population. Segregation of plasma CA15-3 levels by the rs4072037 genotype did not significantly improve differentiation between affected and unaffected individuals. CA15-3 levels were minimally affected by gender and estimated glomerular filtration rate. DISCUSSION/CONCLUSIONS: Plasma CA15-3 levels in ADTKD-MUC1 patients are approximately 40% lower than levels in healthy individuals, though there is significant overlap between groups. Further investigations need to be performed to see if plasma CA15-3 levels would be useful in diagnosis, prognosis, or assessing response to new therapies in this disorder.


Assuntos
Mucina-1/sangue , Nefrite Intersticial/sangue , Uromodulina/genética , Adulto , Idoso , Alelos , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-1/genética , Mutação , Nefrite Intersticial/genética , Prognóstico
8.
Nucleic Acids Res ; 48(20): 11304-11321, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33084892

RESUMO

In genomic fine-mapping studies, some approaches leverage annotation data to prioritize likely functional polymorphisms. However, existing annotation resources can present challenges as many lack information for novel variants and/or may be uninformative for non-coding regions. We propose a novel annotation source, sequence-dependent DNA topology, as a prioritization metric for fine-mapping. DNA topology and function are well-intertwined, and as an intrinsic DNA property, it is readily applicable to any genomic region. Here, we constructed and applied Minor Groove Width (MGW) as a prioritization metric. Using an established MGW-prediction method, we generated a MGW census for 199 038 197 SNPs across the human genome. Summarizing a SNP's change in MGW (ΔMGW) as a Euclidean distance, ΔMGW exhibited a strongly right-skewed distribution, highlighting the infrequency of SNPs that generate dissimilar shape profiles. We hypothesized that phenotypically-associated SNPs can be prioritized by ΔMGW. We tested this hypothesis in 116 regions analyzed by a Massively Parallel Reporter Assay and observed enrichment of large ΔMGW for functional polymorphisms (P = 0.0007). To illustrate application in fine-mapping studies, we applied our MGW-prioritization approach to three non-coding regions associated with systemic lupus erythematosus. Together, this study presents the first usage of sequence-dependent DNA topology as a prioritization metric in genomic association studies.


Assuntos
Mapeamento Cromossômico/métodos , DNA/química , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Sequência de Bases , Teorema de Bayes , População Negra/genética , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Hispânico ou Latino/genética , Humanos , Lúpus Eritematoso Sistêmico/genética , Anotação de Sequência Molecular/métodos , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Locos de Características Quantitativas , Fator de Transcrição STAT4/genética , População Branca/genética , Quinases da Família src/genética
9.
Kidney Int Rep ; 5(9): 1472-1485, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32954071

RESUMO

INTRODUCTION: Autosomal dominant tubulo-interstitial kidney disease due to UMOD mutations (ADTKD-UMOD) is a rare condition associated with high variability in the age of end-stage kidney disease (ESKD). The minor allele of rs4293393, located in the promoter of the UMOD gene, is present in 19% of the population and downregulates uromodulin production by approximately 50% and might affect the age of ESKD. The goal of this study was to better understand the genetic and clinical characteristics of ADTKD-UMOD and to perform a Mendelian randomization study to determine if the minor allele of rs4293393 was associated with better kidney survival. METHODS: An international group of collaborators collected clinical and genetic data on 722 affected individuals from 249 families with 125 mutations, including 28 new mutations. The median age of ESKD was 47 years. Men were at a much higher risk of progression to ESKD (hazard ratio 1.78, P < 0.001). RESULTS: The allele frequency of the minor rs4293393 allele was only 11.6% versus the 19% expected (P < 0.01), resulting in Hardy-Weinberg disequilibrium and precluding a Mendelian randomization experiment. An in vitro score reflecting the severity of the trafficking defect of uromodulin mutants was found to be a promising predictor of the age of ESKD. CONCLUSION: We report the clinical characteristics associated with 125 UMOD mutations. Male gender and a new in vitro score predict age of ESKD.

10.
Kidney Int Rep ; 5(6): 891-904, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32518871

RESUMO

INTRODUCTION: APOL1 G1 and G2 nephropathy-risk variants cause mitochondrial dysfunction and contribute to kidney disease. Analyses were performed to determine the genetic regulation of APOL1 and elucidate potential mechanisms in APOL1-nephropathy. METHODS: A global gene expression analysis was performed in human primary renal tubule cell lines derived from 50 African American individuals. Follow-up gene knock out, cell-based rescue, and microscopy experiments were performed. RESULTS: APOL1 genotypes did not alter APOL1 expression levels in the global gene expression analysis. Expression quantitative trait locus (eQTL) analysis in polyinosinic-polycytidylic acid (poly IC)-stimulated renal tubule cells revealed that single nucleotide polymorphism (SNP) rs513349 adjacent to BAK1 was a trans eQTL for APOL1 and a cis eQTL for BAK1; APOL1 and BAK1 were co-expressed in cells. BAK1 knockout in a human podocyte cell line resulted in diminished APOL1 protein, supporting a pivotal effect for BAK1 on APOL1 expression. Because BAK1 is involved in mitochondrial dynamics, mitochondrial morphology was examined in primary renal tubule cells and HEK293 Tet-on cells of various APOL1 genotypes. Mitochondria in APOL1 wild-type (G0G0) tubule cells maintained elongated morphology when stimulated by low-dose poly IC, whereas those with G1G1, G2G2, and G1G2 genotypes appeared to fragment. HEK293 Tet-on cells overexpressing APOL1 G0, G1, and G2 were created; G0 cells appeared to promote mitochondrial fusion, whereas G1 and G2 induced mitochondrial fission. The mitochondrial dynamic regulator Mdivi-1 significantly preserved cell viability and mitochondrial cristae structure and reversed mitochondrial fission induced by overexpression of G1 and G2. CONCLUSION: Results suggest the mitochondrial fusion/fission pathway may be a therapeutic target in APOL1-nephropathy.

11.
Clin Epigenetics ; 10: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636834

RESUMO

Background: Genetic variants within the fatty acid desaturase (FADS) gene cluster (human Chr11) are important regulators of long-chain (LC) polyunsaturated fatty acid (PUFA) biosynthesis in the liver and consequently have been associated with circulating LC-PUFA levels. More recently, epigenetic modifications such as DNA methylation, particularly within the FADS cluster, have been shown to affect LC-PUFA levels. Our lab previously demonstrated strong associations of allele-specific methylation (ASM) between a single nucleotide polymorphism (SNP) rs174537 and CpG sites across the FADS region in human liver tissues. Given that epigenetic signatures are tissue-specific, we aimed to evaluate the methylation status and ASM associations between rs174537 and DNA methylation obtained from human saliva, CD4+ cells and total leukocytes derived from whole blood. The goals were to (1) determine if DNA methylation from these peripheral samples would display similar ASM trends as previously observed in human liver tissues and (2) evaluate the associations between DNA methylation and circulating LC-PUFAs. Results: DNA methylation at six CpG sites spanning FADS1 and FADS2 promoter regions and a putative FADS enhancer region were determined in two Caucasian cohorts of healthy volunteers: leukocytes in cohort 1 (n = 89, median age = 43, 35% male) and saliva and CD4+ cells in cohort 2 (n = 32, median age = 41, 41% male). Significant ASM between rs174537 and DNA methylation at three CpG sites located in the FADS2 promoter region (i.e., chr11:61594865, chr11:61594876, chr11:61594907) and one CpG site in the putative enhancer region (chr11:61587979) were observed with leukocytes. In CD4+ cells, significant ASM was observed at CpG sites chr11:61594876 and chr11:61584894. Genotype at rs174537 was significantly associated with DNA methylation from leukocytes. Similar trends were observed with CD4+ cells, but not with saliva. DNA methylation from leukocytes and CD4+ cells also significantly correlated with circulating omega-6 LC-PUFAs. Conclusions: We observed significant ASM between rs174537 and DNA methylation at key regulatory regions in the FADS region from leukocyte and CD4+ cells. DNA methylation from leukocytes also correlated with circulating omega-6 LC-PUFAs. These results support the use of peripheral whole blood samples, with leukocytes showing the most promise for future nutrigenomic studies evaluating epigenetic modifications affecting LC-PUFA biosynthesis in humans.


Assuntos
Linfócitos T CD4-Positivos/química , Metilação de DNA , Ácidos Graxos Dessaturases/genética , Leucócitos/química , Saliva/química , Adulto , Alelos , Cromossomos Humanos Par 11/genética , Dessaturase de Ácido Graxo Delta-5 , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , População Branca/genética , Adulto Jovem
12.
Arthritis Rheumatol ; 70(6): 957-962, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29426059

RESUMO

OBJECTIVE: Juvenile idiopathic arthritis (JIA) comprises 7 heterogeneous categories of chronic childhood arthritides. Approximately 5% of children with JIA have rheumatoid factor (RF)-positive arthritis, which phenotypically resembles adult rheumatoid arthritis (RA). Our objective was to compare and contrast the genetics of RF-positive polyarticular JIA with those of RA and selected other JIA categories, to more fully understand the pathophysiologic relationships of inflammatory arthropathies. METHODS: Patients with RF-positive polyarticular JIA (n = 340) and controls (n = 14,412) were genotyped using the Immunochip array. Single-nucleotide polymorphisms were tested for association using a logistic regression model adjusting for admixture proportions. We calculated weighted genetic risk scores (wGRS) of reported RA and JIA risk loci, and we compared the ability of these wGRS to predict RF-positive polyarticular JIA. RESULTS: As expected, the HLA region was strongly associated with RF-positive polyarticular JIA (P = 5.51 × 10-31 ). Nineteen of 44 RA risk loci and 6 of 27 oligoarticular/RF-negative polyarticular JIA risk loci were associated with RF-positive polyarticular JIA (P < 0.05). The RA wGRS predicted RF-positive polyarticular JIA (area under the curve [AUC] 0.71) better than did the oligoarticular/RF-negative polyarticular JIA wGRS (AUC 0.59). The genetic profile of patients with RF-positive polyarticular JIA was more similar to that of RA patients with age at onset 16-29 years than to that of RA patients with age at onset ≥70 years. CONCLUSION: RF-positive polyarticular JIA is genetically more similar to adult RA than to the most common JIA categories and thus appears to be a childhood-onset presentation of autoantibody-positive RA. These findings suggest common disease mechanisms, which could lead to novel therapeutic targets and shared treatment strategies.


Assuntos
Artrite Juvenil/genética , Artrite Reumatoide/genética , Autoanticorpos/genética , Perfil Genético , Fator Reumatoide/genética , Adolescente , Adulto , Artrite Juvenil/imunologia , Artrite Reumatoide/imunologia , Criança , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Fator Reumatoide/imunologia
13.
Arthritis Rheumatol ; 69(11): 2170-2174, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29045069

RESUMO

OBJECTIVE: Fetal exposure to maternal anti-SSA/Ro antibodies is necessary but not sufficient for the development of autoimmune congenital heart block (CHB), suggesting that other factors, such as fetal genetic predisposition, are important. Given the previously described association between major histocompatibility complex alleles and CHB risk, we undertook the present study to test the hypothesis that a variant form of HLA-C Asn80Lys, which binds with high affinity to an inhibitory killer cell immunoglobulin-like receptor (KIR) and thus renders natural killer (NK) cells incapable of restricting inflammation, contributes to the development of CHB. METHODS: Members of 192 pedigrees in the US and Europe (194 cases of CHB, 91 unaffected siblings, 152 fathers, 167 mothers) and 1,073 out-of-study controls were genotyped on the Immunochip single-nucleotide polymorphism microarray. Imputation was used to identify associations at HLA-C Asn80Lys (Asn, C1; Lys, C2) and KIR. Tests for association were performed using logistic regression. McNemar's test and the pedigree disequilibrium test (PDT) were used for matched analyses between affected and unaffected children. RESULTS: Compared with out-of-study controls of the same sex, the C2 allele was less frequent in the mothers (odds ratio [OR] 0.63, P = 0.0014) and more frequent in the fathers (OR 1.40, P = 0.0123), yielding a significant sex-by-C2 interaction (P = 0.0002). The C2 allele was more frequent in affected siblings than in unaffected siblings (OR 3.67, P = 0.0025), which was consistent with the PDT results (P = 0.016); these results were observed in both sexes and across the US and European cohorts. There was no difference in the frequency of the inhibitory KIR genotype (KIR AA) between affected and unaffected children (P = 0.55). CONCLUSION: These data establish C2 as a novel genetic risk factor associated with CHB. This observation supports a model in which fetuses with C2 ligand expression and maternal anti-SSA/Ro positivity may have impaired NK cell surveillance, resulting in unchecked cardiac inflammation and scarring.


Assuntos
Antígenos HLA-C/genética , Bloqueio Cardíaco/congênito , Anticorpos Antinucleares/imunologia , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Europa (Continente) , Pai , Feminino , Genótipo , Bloqueio Cardíaco/genética , Bloqueio Cardíaco/imunologia , Humanos , Recém-Nascido , Modelos Logísticos , Masculino , Mães , Razão de Chances , Linhagem , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Irmãos , Estados Unidos
14.
PLoS One ; 12(9): e0180903, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957329

RESUMO

Genetic variants near and within the fatty acid desaturase (FADS) cluster are associated with polyunsaturated fatty acid (PUFA) biosynthesis, levels of several disease biomarkers and risk of human disease. However, determining the functional mechanisms by which these genetic variants impact PUFA levels remains a challenge. Utilizing an Illumina 450K array, we previously reported strong allele-specific methylation (ASM) associations (p = 2.69×10-29) between a single nucleotide polymorphism (SNP) rs174537 and DNA methylation of CpG sites located in the putative enhancer region between FADS1 and FADS2, in human liver tissue. However, this array only featured 20 CpG sites within this 12kb region. To better understand the methylation landscape within this region, we conducted bisulfite sequencing of the region between FADS1 and FADS2. Liver tissues from 50 male subjects (27 European Americans, 23 African Americans) were obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, and used to ascertain the genotype at rs174537 and methylation status across the region of interest. Associations between rs174537 genotype and methylation status of 136 CpG sites were determined. Age-adjusted linear regressions were used to assess ASM associations with rs174537 genotype. The majority of CpG sites (117 out of 136, 86%) exhibited high levels of methylation with the greatest variability observed at three key regulatory regions-the promoter regions for FADS1 and FADS2 and a putative enhancer site between the two genes. Eight CpG sites within the putative enhancer region displayed significant (FDR p <0.05) ASM associations with rs174537. These data support the concept that both genetic and epigenetic factors regulate PUFA biosynthesis, and raise fundamental questions as to how genetic variants such as rs174537 impact DNA methylation in distant regulatory regions, and ultimately the capacity of tissues to synthesize PUFAs.


Assuntos
Metilação de DNA/genética , Ácidos Graxos Dessaturases/genética , Família Multigênica , Sequências Reguladoras de Ácido Nucleico/genética , Adulto , Negro ou Afro-Americano/genética , Ilhas de CpG/genética , Dessaturase de Ácido Graxo Delta-5 , Demografia , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , População Branca/genética
15.
Nat Commun ; 8: 16021, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714469

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10-8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , Carga Genética , Antígenos HLA/genética , Lúpus Eritematoso Sistêmico/genética , População Branca/genética , Idade de Início , Estudos de Casos e Controles , Hispânico ou Latino/genética , Humanos , Modelos Logísticos , Herança Multifatorial , Mutagênese Insercional , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
16.
Nephrol Dial Transplant ; 32(suppl_2): ii159-ii169, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28201750

RESUMO

Familial aggregation of chronic kidney disease and its component phenotypes-reduced glomerular filtration rate, proteinuria and renal histologic changes-has long been recognized. Rates of severe kidney disease are also known to differ markedly between populations based on ancestry. These epidemiologic observations support the existence of nephropathy susceptibility genes. Several molecular genetic technologies are now available to identify causative loci. The present article summarizes available strategies useful for identifying nephropathy susceptibility genes, including candidate gene association, family-based linkage, genome-wide association and admixture mapping (mapping by admixture linkage disequilibrium) approaches. Examples of loci detected using these techniques are provided. Epigenetic studies and future directions are also discussed. The identification of nephropathy susceptibility genes, coupled with modifiable environmental triggers impacting their function, is likely to improve risk prediction and transform care. Development of novel therapies to prevent progression of kidney disease will follow.


Assuntos
Insuficiência Renal Crônica/genética , Animais , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Epidemiologia Molecular , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/epidemiologia
17.
BMC Genet ; 17(1): 74, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266705

RESUMO

BACKGROUND: Fibrotic idiopathic interstitial pneumonias (fIIP) are a group of fatal lung diseases with largely unknown etiology and without definitive treatment other than lung transplant to prolong life. There is strong evidence for the importance of both rare and common genetic risk alleles in familial and sporadic disease. We have previously used genome-wide single nucleotide polymorphism data to identify 10 risk loci for fIIP. Here we extend that work to imputed genome-wide genotypes and conduct new RNA sequencing studies of lung tissue to identify and characterize new fIIP risk loci. RESULTS: We performed genome-wide genotype imputation association analyses in 1616 non-Hispanic white (NHW) cases and 4683 NHW controls followed by validation and replication (878 cases, 2017 controls) genotyping and targeted gene expression in lung tissue. Following meta-analysis of the discovery and replication populations, we identified a novel fIIP locus in the HLA region of chromosome 6 (rs7887 P meta = 3.7 × 10(-09)). Imputation of classic HLA alleles identified two in high linkage disequilibrium that are associated with fIIP (DRB1*15:01 P = 1.3 × 10(-7) and DQB1*06:02 P = 6.1 × 10(-8)). Targeted RNA-sequencing of the HLA locus identified 21 genes differentially expressed between fibrotic and control lung tissue (Q < 0.001), many of which are involved in immune and inflammatory response regulation. In addition, the putative risk alleles, DRB1*15:01 and DQB1*06:02, are associated with expression of the DQB1 gene among fIIP cases (Q < 1 × 10(-16)). CONCLUSIONS: We have identified a genome-wide significant association between the HLA region and fIIP. Two HLA alleles are associated with fIIP and affect expression of HLA genes in lung tissue, indicating that the potential genetic risk due to HLA alleles may involve gene regulation in addition to altered protein structure. These studies reveal the importance of the HLA region for risk of fIIP and a basis for the potential etiologic role of auto-immunity in fIIP.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar/genética , Análise de Sequência de RNA/métodos , Adulto , Idoso , Cromossomos Humanos Par 6/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade
18.
Arthritis Rheumatol ; 68(4): 932-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606652

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component. We undertook the present work to perform the first genome-wide association study on individuals from the Americas who are enriched for Native American heritage. METHODS: We analyzed 3,710 individuals from the US and 4 countries of Latin America who were diagnosed as having SLE, and healthy controls. Samples were genotyped with HumanOmni1 BeadChip. Data on out-of-study controls genotyped with HumanOmni2.5 were also included. Statistical analyses were performed using SNPtest and SNPGWA. Data were adjusted for genomic control and false discovery rate. Imputation was performed using Impute2 and, for classic HLA alleles, HiBag. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS: The IRF5-TNPO3 region showed the strongest association and largest OR for SLE (rs10488631: genomic control-adjusted P [Pgcadj ] = 2.61 × 10(-29), OR 2.12 [95% CI 1.88-2.39]), followed by HLA class II on the DQA2-DQB1 loci (rs9275572: Pgcadj = 1.11 × 10(-16), OR 1.62 [95% CI 1.46-1.80] and rs9271366: Pgcadj = 6.46 × 10(-12), OR 2.06 [95% CI 1.71-2.50]). Other known SLE loci found to be associated in this population were ITGAM, STAT4, TNIP1, NCF2, and IRAK1. We identified a novel locus on 10q24.33 (rs4917385: Pgcadj = 1.39 × 10(-8)) with an expression quantitative trait locus (eQTL) effect (Peqtl = 8.0 × 10(-37) at USMG5/miR1307), and several new suggestive loci. SLE risk loci previously identified in Europeans and Asians were corroborated. Local ancestry estimation showed that the HLA allele risk contribution is of European ancestral origin. Imputation of HLA alleles suggested that autochthonous Native American haplotypes provide protection against development of SLE. CONCLUSION: Our results demonstrate that studying admixed populations provides new insights in the delineation of the genetic architecture that underlies autoimmune and complex diseases.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Lúpus Eritematoso Sistêmico/genética , Argentina , Antígeno CD11b/genética , Estudos de Casos e Controles , Chile , Cromossomos Humanos Par 10/genética , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Cadeias beta de HLA-DQ/genética , Haplótipos , Humanos , Fatores Reguladores de Interferon , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , México , ATPases Mitocondriais Próton-Translocadoras/genética , NADPH Oxidases/genética , Razão de Chances , Peru , Análise de Componente Principal , Fator de Transcrição STAT4/genética , Estados Unidos , População Branca/genética , beta Carioferinas
19.
Springerplus ; 3: 661, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485197

RESUMO

UNLABELLED: Botanical seed oils reduce the generation of leukotrienes in patients with asthma. Our objective was to determine the efficacy of a botanical seed oil combination against airflow obstruction in asthma, and to determine the pharmacogenomic effect of the leukotriene C4 synthase (LTC4S) polymorphism A-444C. We conducted a randomized, double-blind, placebo-controlled, cross-over clinical trial in mild to moderate asthmatics to determine the change in FEV1 after 6 weeks of therapy with borage and echium seed oils versus corn oil placebo. We also examined the effect of the variant LTC4S -444C allele on the change in lung function. We did not identify a difference in FEV1 in the study cohort as a whole (n = 28), nor in the group of A homozygotes. In the C allele carriers (n = 9), FEV1 improved by 3% after treatment with borage and echium seed oils and declined by 4% after placebo corn oil (p = 0.02). All 9 C allele carriers demonstrated an improvement in their FEV1 on active treatment compared to placebo as compared to only 7 out of 19 A allele homozygotes (p = 0.007). We observed transient differences in ex vivo leukotriene generation from circulating basophils and granulocytes. We did not observe significant differences in urinary LTE4 levels. We conclude that compared to corn oil, a combination of borage and echium seed oils improves airflow obstruction in mild to moderate asthmatics who carry the variant allele in the LTC4S gene (A-444C). Botanical oil supplementation may have therapeutic potential in asthma if used in a personalized manner. TRIAL REGISTRATION: This trial was registered at http://www.clinicaltrials.gov as NCT00806442.

20.
PLoS One ; 9(5): e97510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842322

RESUMO

Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18:2, n-6) to AA and α-linolenic acid (ALA, 18:3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5' to 5') in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼ 15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95 × 10(-46)) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.


Assuntos
Metilação de DNA/genética , Ácidos Graxos Dessaturases/genética , Alelos , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Ômega-6/metabolismo , Humanos , Desequilíbrio de Ligação/genética , Fígado/enzimologia , Fígado/metabolismo , Polimorfismo de Nucleotídeo Único , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...