Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769180

RESUMO

Macrophages are versatile immune cells and can adapt to both external stimuli and their surrounding environment. Macrophages are categorized into two major categories; M1 macrophages release pro-inflammatory cytokines and produce protective responses that lead to antimicrobial or antitumor activity. M2 or tumor-associated macrophages (TAM) release anti-inflammatory cytokines that support tumor growth, invasion capacity, and metastatic potential. Since macrophages can be re-polarized from an M2 to an M1 phenotype with a variety of strategies, this has emerged as an innovative anti-cancer approach. Osteosarcoma (OS) is a kind of bone cancer and consists of a complex niche, and immunotherapy is not very effective. Therefore, immediate attention to new strategies is required. We incorporated the recent studies that have used M2-M1 repolarization strategies in the aspect of treating OS cancer.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Macrófagos , Citocinas , Osteossarcoma/terapia , Osteossarcoma/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/patologia , Imunoterapia
2.
ACS Omega ; 7(50): 46222-46233, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570199

RESUMO

T cells play an integral role in the generation of an effective immune response and are responsible for clearing foreign microbes that have bypassed innate immune system defenses and possess cognate antigens. The immune response can be directed toward a desired target through the selective priming and activation of T cells. Due to their ability to activate a T cell response, dendritic cells and endogenous vesicles from dendritic cells are being developed for cancer immunotherapy treatment. However, current platforms, such as exosomes and synthetic nanoparticles, are limited by their production methods and application constraints. Here, we engineer nanovesicles derived from dendritic cell membranes with similar properties as dendritic cell exosomes via nitrogen cavitation. These cell-derived nanovesicles are capable of activating antigen-specific T cells through direct and indirect mechanisms. Additionally, these nanovesicles can be produced in large yields, overcoming production constraints that limit clinical application of alternative immunomodulatory vesicle or nanoparticle-based methods. Thus, dendritic cell-derived nanovesicles generated by nitrogen cavitation show potential as an immunotherapy platform to stimulate and direct T cell response.

3.
Nat Commun ; 13(1): 746, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136054

RESUMO

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design.


Assuntos
Aprendizado Profundo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos/genética , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos/genética , Dobramento de Proteína
4.
Microbes Infect ; 24(3): 104908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34781010

RESUMO

We examined the roles of indoleamine-2, 3-dioxygenase 1 (IDO1) in controlling cerebral Toxoplasma gondii infection in both genetically resistant and susceptible strains of mice. In susceptible C57BL/6 mice, IDO expression was immunohistochemically detected only in a minority (22.5%) of tachyzoite-infected cells in their brains during the later stage of infection. When C57BL-6-background IDO1-deficient (IDO1-/-) mice were infected, their cerebral tachyzoite burden was equivalent to those of wild-type (WT) animals. In contrast, in resistant BALB/c mice, IDO expression was detected in a majority (84.0%) of tachyzoite-infected cerebral cells. However, tachyzoite burden in BALB/c-background IDO1-/- mice remained as low as that of WT mice, which was 78 times less than those of C57BL/6 mice. Of interest, IDO1-/- mice of only resistant BALB/c-background had markedly greater cerebral expressions of two other IFN-γ-mediated effector molecules, guanylate binding protein 1 (Gbp1) and nitric oxide synthase 2 (NOS2), than their WT mice. Therefore, it would be possible that IDO1 deficiency was effectively compensated by the upregulated expression of Gbp1 and NOS2 to control cerebral tachyzoite growth in genetically resistant BALB/c mice, whereas IDO1 did not significantly contribute to controlling cerebral tachyzoite growth in genetically susceptible C57BL/6 mice because of its suppressed expression in infected cells.


Assuntos
Dioxigenases , Toxoplasma , Animais , Encéfalo , Dioxigenases/metabolismo , Predisposição Genética para Doença , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/genética , Regulação para Cima
5.
Front Oncol ; 12: 1042730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713536

RESUMO

Background: Ovarian cancer is a deadly female malignancy with a high rate of recurrent and chemotherapy-resistant disease. Tumor-associated macrophages (TAMs) are a significant component of the tumor microenvironment and include high levels of M2-protumor macrophages that promote chemoresistance and metastatic spread. M2 macrophages can be converted to M1 anti-tumor macrophages, representing a novel therapeutic approach. Vesicles engineered from M1 macrophages (MEVs) are a novel method for converting M2 macrophages to M1 phenotype-like macrophages. Methods: Macrophages were isolated and cultured from human peripheral blood mononuclear cells. Macrophages were stimulated to M1 or M2 phenotypes utilizing LPS/IFN-γ and IL-4/IL-13, respectively. M1 MEVs were generated with nitrogen cavitation and ultracentrifugation. Co-culture of ovarian cancer cells with macrophages and M1 MEVs was followed by cytokine, PCR, and cell viability analysis. Murine macrophage cell line, RAW264.7 cells were cultured and used to generate M1 MEVs for use in ovarian cancer xenograft models. Results: M1 MEVs can effectively convert M2 macrophages to an M1-like state both in isolation and when co-cultured with ovarian cancer cells in vitro, resulting in a reduced ovarian cancer cell viability. Additionally, RAW264.7 M1 MEVs can localize to ovarian cancer tumor xenografts in mice. Conclusion: Human M1 MEVs can repolarize M2 macrophages to a M1 state and have anti-cancer activity against ovarian cancer cell lines. RAW264.7 M1 MEVs localize to tumor xenografts in vivo murine models.

6.
Nat Chem Biol ; 17(5): 540-548, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33603247

RESUMO

Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.


Assuntos
Actinina/química , Células Epiteliais/metabolismo , Miosinas/química , Neurônios/metabolismo , Engenharia de Proteínas/métodos , Espectrina/química , Actinina/genética , Actinina/metabolismo , Animais , Avena , Linhagem Celular , Chara , Galinhas , Clonagem Molecular , Dictyostelium , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Luz , Modelos Moleculares , Movimento (Física) , Miosinas/genética , Miosinas/metabolismo , Neurônios/citologia , Neurônios/efeitos da radiação , Óptica e Fotônica/métodos , Cultura Primária de Células , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrina/genética , Espectrina/metabolismo , Nicotiana
7.
Acta Parasitol ; 66(3): 812-826, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33528770

RESUMO

PURPOSE: Visceral leishmaniasis is one of the ignored parasitic infection affecting millions of people globally. Currently, available treatment options are unsatisfactory because of high cost and side effects of the leishmanicidal drugs. Therefore, herbal medicines provide a promising choice for the detection of efficient and novel leishmanicidal therapeutics which can rejuvenate the immune response of the host with less adverse effects. The objective of the present study was to determine the in vitro and in vivo effect of hydroethanolic extract of Bauhinia variegata (HEBV) against Leishmania donovani. METHODS: The in vitro efficacy and cytotoxicity of HEBV was checked against L. donovani and THP1 human macrophages. Further HEBV (500 and 1000 mg/kg b.wt.) were given orally to inbred BALB/c mice infected with L. donovani for 2 weeks and euthanized on 14th post treatment day. Various parameters like parasite load, delayed-type hypersensitivity (DTH) responses, T cells, Th1/Th2 cytokines, histological and biochemical tests were investigated. RESULTS: HEBV showed marked antileishmanial activity with cell cycle arrest at sub-G0/G1 phase. HEBV was found to be more effective at higher dose in declining parasite concentration in the spleen as compared to the lower dose. Moreover, the extract augmented the DTH reaction and T cell responses in the infected mice. Oral administration of HEBV caused the enhancement of disease-suppressing Th1 cytokines and suppression of disease-progressing Th2 cytokines with no toxicities. CONCLUSION: Thus, HEBV showed the antileishmanial efficacy through the generation of pro-inflammatory immunity of the host which further suggests the mechanistic exploration of it as a leishmanicidal therapeutic.


Assuntos
Bauhinia , Leishmania donovani , Leishmaniose Visceral , Animais , Modelos Animais de Doenças , Leishmaniose Visceral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C
8.
Int J Biol Macromol ; 167: 587-594, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33278437

RESUMO

Ferulic acid was chemically grafted onto the arabinogalactan protein of Aegle marmelos fruit gum using 1,1'-carbonyldiimidazole as coupling reagent. Thus, grafted polysaccharides with different degrees of substitution were prepared and then characterized by gas chromatography/mass spectrometry, size exclusion chromatography, and ultraviolet-visible, infra-red, and nuclear magnetic resonance spectroscopic investigations. Fluorescence spectroscopic investigation showed hydrophobic microdomain formation in grafted polymers. The antioxidant activities of the derivatives, as determined by the 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl radical assay, were strong and increases with increasing the degree of feruloylation. Compared to parental arabinogalactan protein (K = 2.38 × 106 M-1), these grafted polymers bind more strongly with ß-lactoglobulin (K = 11.4 × 106 M-1 and 8.19 × 106 M-1). Given that gum polysaccharides are valuable component in functional foods, synthesis of antioxidative graft polymer possessing good compatibility with ß-lactoglobulin may have important implication.


Assuntos
Antioxidantes/farmacologia , Ácidos Cumáricos/farmacologia , Lactoglobulinas/metabolismo , Mucoproteínas/química , Aegle/metabolismo , Antioxidantes/química , Cromatografia em Gel , Ácidos Cumáricos/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Proteínas de Plantas/química , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
9.
JBJS Case Connect ; 10(3): e20.00231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960017

RESUMO

CASE: A 76-year-old woman without a personal or family history of gout presented with complaints of left hip pain after a mechanical fall from her wheelchair. Advanced imaging revealed a nonspecific lesion and nondisplaced fracture of the femoral neck. Intraoperative biopsy from the lesion/fracture demonstrated tophaceous gout. CONCLUSION: Fractures resulting from osseous manifestations of the gout are rare with this report describing a hip fracture secondary to tophaceous gout. We emphasize the importance of including this potential etiology in the differential diagnosis of elderly patients presenting with hip pain, with or without a known history of gout.


Assuntos
Fraturas do Colo Femoral/etiologia , Colo do Fêmur/patologia , Fraturas Espontâneas/etiologia , Gota/complicações , Idoso , Feminino , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/patologia , Fraturas do Colo Femoral/cirurgia , Fraturas Espontâneas/diagnóstico por imagem , Fraturas Espontâneas/patologia , Fraturas Espontâneas/cirurgia , Gota/diagnóstico , Gota/patologia , Humanos , Imageamento por Ressonância Magnética
10.
mSystems ; 5(2)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291349

RESUMO

We recently found that an invasion of CD8+ cytotoxic T cells into tissue cysts of Toxoplasma gondii initiates an elimination of the cysts in association with an accumulation of microglia and macrophages. In the present study, we compared mRNA levels for 734 immune-related genes in the brains of infected SCID mice that received perforin-sufficient or -deficient CD8+ immune T cells at 3 weeks after infection. At 7 days after the T cell transfer, mRNA levels for only six genes were identified to be greater in the recipients of the perforin-sufficient T cells than in the recipients of the perforin-deficient T cells. These six molecules included two T cell costimulatory molecules, inducible T cell costimulator receptor (ICOS) and its ligand (ICOSL); two chemokine receptors, C-X-C motif chemokine receptor 3 (CXCR3) and CXCR6; and two molecules related to an activation of microglia and macrophages, interleukin 18 receptor 1 (IL-18R1) and chitinase-like 3 (Chil3). Consistently, a marked reduction of cyst numbers and upregulation of ICOS, CXCR3, CXCR6, IL-18R1, and Chil3 mRNA levels were also detected when the perforin-sufficient CD8+ immune T cells were transferred to infected SCID mice at 6 weeks after infection, indicating that the CD8+ T cell-mediated protective immunity is capable of eliminating mature T. gondii cysts. These results together suggest that ICOS-ICOSL interactions are crucial for activating CD8+ cytotoxic immune T cells to initiate the destruction of T. gondii cysts and that CXCR3, CXCR6, and IL-18R are involved in recruitment and activation of microglia and macrophages to the T cell-attacked cysts for their elimination.IMPORTANCE T. gondii establishes a chronic infection by forming tissue cysts, which can grow into sizes greater than 50 µm in diameter as a consequence of containing hundreds to thousands of organisms surrounded by the cyst wall within infected cells. Our recent studies using murine models uncovered that CD8+ cytotoxic T cells penetrate into the cysts in a perforin-dependent manner and induce their elimination, which is accompanied with an accumulation of phagocytic cells to the T cell-attacked target. This is the first evidence of the ability of the T cells to invade into a large target for its elimination. However, the mechanisms involved in anticyst immunity remain unclear. Immune profiling analyses of 734 immune-related genes in the present study provided a valuable foundation to initiate elucidating detailed molecular mechanisms of the novel effector function of the immune system operated by perforin-mediated invasion of CD8+ T cells into large targets for their elimination.

11.
Int J Biol Macromol ; 136: 521-530, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158418

RESUMO

The provisioning of compound libraries with a high degree of diversity and attractive pharmacological properties is a limiting step in drug development. This study reports the production of highly bioactive sulfated polysaccharides, originally present in a nonsulfated, dormant state in natural sources, and demonstrates their antiviral activity (human cytomegalovirus EC50 values of 2.34-7.77 µg/mL) at a low degree of cytotoxicity. Furthermore, data strongly suggested the inhibition of virus entry as the main mode of antiviral action. Remarkably, the utilized oleum-DMF reagent was able to generate a range of sulfated polysaccharides from various natural sources, possessing varying saccharide compositions, degrees of sulfation (0.4-1.7) and molecular masses (38-94,000 g/mol). Typically, in a matter of minutes, this reagent not only solubilized polysaccharides but also chemically converted their hydroxyl functionality into sulfates. The most active sulfated polysaccharide (EC50 of 2.62 µg/mL) proved to be a 94,000 g/mol branched glucan with sulfates at C-6/C-3,6/C-2,3,6 positions. In conclusion, the important determinants of such compounds' antiviral activity are: (i) degree of sulfation, (ii) molecular mass and (iii) structural features. Thus, our approach offers a huge prospect for the improvement of natural source-derived libraries based on biologically active polysaccharides with diversified chemical profiles.


Assuntos
Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Sulfatos/química , Antivirais/isolamento & purificação , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Glicosilação , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Humanos , Peso Molecular , Plantas/química , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
12.
Int J Biol Macromol ; 109: 681-686, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274417

RESUMO

Decoction of Psidium guajava leaves has been used as medication for chronic coughs and breathlessness for ages. Despite demonstration of antitussive activity, the specific molecule responsible for this remains unidentified. Herein, we report chemical profile and antitussive activity of its water extract (WE) and a polysaccharide (F1) present therein. This polysaccharide (F1), purified from WE by precipitation with ethanol and then through Cu(II)acetate, contains Ara, Gal, Rha, Glc and GalA residues, and has a molecular mass of 156 kDa. It comprises of terminal-, (1,5)- and (1,3,5)-linked Araf; (1,3)-, (1,6)- and (1,3,6)-linked Galp alongside (1,2)- and (1,2,4)-linked Rhap residues. Oligosaccharides indicating polysaccharide structure have been generated by Smith degradation and characterized. The WE fraction suppressed citric acid induced cough efforts in guinea pigs in the dose of 50 mg kg-1. Assessment of antitussive activity of fractions prepared from WE namely F1 (polysaccharide) and F2 (ethanol soluble fraction) revealed that polysaccharide is the active component. Remarkably, tested samples do not alter the specific airway smooth muscle reactivity in animals significantly. The simple extraction method, prominent activity and favorable reactions profile suggest that this macromolecule could be an antitussive drug candidate.


Assuntos
Antitussígenos/química , Antitussígenos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Psidium/química , Animais , Antitussígenos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Cobaias , Masculino , Peso Molecular , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos Fitoquímicos/química , Extratos Vegetais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
13.
Nanomedicine (Lond) ; 11(1): 47-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26654428

RESUMO

AIM: To analyze the effect of native buffalo lactoferrin (buLf) protein along with its nanoformulation using alginate-enclosed, chitosan-conjugated, calcium phosphate buffalo Lf nanocapsules (AEC-CCo-CP-buLf NCs) against rodent parasite Plasmodium berghei. MATERIALS & METHODS: BALB/c mice were infected with malaria parasite and efficacy of the proteins (buLf and NCs) was evaluated by measuring parasitemia, initialization, role of miRNA in absorption of NCs, parasite load by histopathology and quantitative determination, cytokine levels, bioavailability and immunohistochemistry to localize Lf protein. RESULTS: NCs significantly reduced the parasite load in mice compared with buLf and untreated group. NCs were found to be modulating the disease profile of mice as shown by immunohistochemistry, free radical ion production and higher survival tendency. CONCLUSION: Our study confirms that NCs internalized and changed the expression of miRNAs that further enhanced their uptake in various organs leading to inhibitory effect against the parasite as well as maintenance of the Fe metabolism.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Cápsulas , Lactoferrina/administração & dosagem , Plasmodium berghei/efeitos dos fármacos , Administração Oral , Animais , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Carga Parasitária , Espécies Reativas de Oxigênio/metabolismo , Baço/patologia
14.
Int J Nanomedicine ; 10: 6355-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504384

RESUMO

Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.


Assuntos
Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/parasitologia , Lactoferrina/administração & dosagem , Lactoferrina/farmacologia , Nanocápsulas/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/fisiologia , Administração Oral , Alginatos/química , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Antiprotozoários/farmacologia , Fosfatos de Cálcio/química , Bovinos , Linhagem Celular , Quitosana/química , Feminino , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Espaço Intracelular/metabolismo , Lactoferrina/química , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C
15.
Org Biomol Chem ; 13(37): 9570-4, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26316322

RESUMO

Metal-free, operationally simple, and highly efficient one-pot aerobic process for the synthesis of functionalized/annulated quinolines is devised from easily available 2-aminobenzyl alcohol/2-aminobenzophenones and alkyl/aryl alcohols for the first time. The process involves two sequential reactions, namely in situ aerial oxidation of alcohols to the corresponding aldehydes/ketones followed by Friedländer annulation.


Assuntos
Álcoois/química , Oxigênio/química , Quinolinas/química , Quinolinas/síntese química , Técnicas de Química Sintética
16.
Drug Des Devel Ther ; 9: 3821-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251568

RESUMO

BACKGROUND: Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). METHODS: Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. RESULTS: The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (P<0.05) in production of reactive oxygen species, phagocytic activity, and Toll-like receptor expression was observed in host cells incubated with iron-saturated lactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. CONCLUSION: The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study reveals the possible mechanism of action against various intracellular pathogens such as Toxoplasma, Plasmodium, Leishmania, Trypanosoma, and Mycobacterium. The presence of iron in lactoferrin plays an important role in enhancing the various activities taking place inside these cells. This work provides a lot of information about targeting lactoferrin against many parasitic infections which can rule out the exact pathways for inhibition of diseases caused by intracellular microbes mainly targeting RBCs and macrophages for their survival. Therefore, this initial study can serve as a baseline for further evaluation of the mechanism of action of lactoferrin against parasitic diseases, which is not fully understood to date.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Lactoferrina/administração & dosagem , Macrófagos/parasitologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Búfalos , Bovinos , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Lactoferrina/isolamento & purificação , Lactoferrina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Survivina
17.
Org Lett ; 16(21): 5536-9, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25343754

RESUMO

A highly efficient and atom-economic dual reaction manifold has been developed to synthesize 4H-thiopyran and 4,5-dihydrothiophene frameworks via regioselective intramolecular C-S fusion of α-allyl-ß'-oxodithioesters. The ring size of the sulfur-heterocycles has been efficiently tuned by the use of two different catalytic systems. Palladium activates the Cδ-H of the allyl termini and facilitates the intramolecular Cδ-S coupling to furnish six-membered thiopyran skeletons exclusively. Conversely, the allylic double bond of the same substrate has been activated by BF3·Et2O to promote the Cγ-S cyclization leading to the formation of a five-membered dihydrothiophene nucleus.


Assuntos
Piranos/síntese química , Compostos de Sulfidrila/síntese química , Ésteres do Ácido Sulfúrico/química , Tiofenos/síntese química , Catálise , Estrutura Molecular , Piranos/química , Estereoisomerismo , Compostos de Sulfidrila/química , Tiofenos/química
18.
Org Biomol Chem ; 12(45): 9216-22, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25299841

RESUMO

A facile and efficient synthesis of chromen-4-one and isoflavone frameworks is achieved by the domino C-acylation/O-acylation/aldolization sequence. This operationally simple one-pot elegant strategy provides structurally unique chromen-4-ones and isoflavones directly from phenols via concomitant formation of multiple C-C and C-O bonds in a single operation. The outcomes of the buttressing effect, substituent dependence, and catalyst and solvent specificity during the course of the Friedel-Crafts acylation reactions are demonstrated and supported by fitting experiments.


Assuntos
Cromonas/síntese química , Isoflavonas/síntese química , Ácidos de Lewis/química , Modelos Moleculares , Acilação , Cromonas/química , Isoflavonas/química , Estrutura Molecular , Solventes/química , Estereoisomerismo
19.
J Org Chem ; 78(10): 4685-96, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23617362

RESUMO

An efficient and simple strategy for the synthesis of a diverse range of anthraquinone-based aryl-C-glycosides has been developed. It involves the sequential Diels-Alder reaction and oxidative aromatization with the preformed glycosyl diene and dienophiles. The glycosyl dienes were obtained from simple sugars by tandem one-pot substitution and elimination reaction.


Assuntos
Antraquinonas/química , Glicosídeos/síntese química , Glicosídeos/química , Estrutura Molecular
20.
ACS Med Chem Lett ; 4(10): 958-63, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900592

RESUMO

A series of 1-[(4-benzyloxyphenyl)-but-3-enyl]-1H-azoles has been identified as potent antitubercular agents against Mycobacterium tuberculosis. Synthesis of compounds involved acid catalyzed ring-opening of cyclopropyl ring of phenyl cyclopropyl methanols followed by nucleophilic attack of the azoles on the carbocation intermediates. Several of the compounds 26, 34, and 36 exhibited significant antitubercular activities with MIC value as low as 1.56, 1.56, and 0.61 µg/mL, respectively, comparable to many standard drugs. These compounds were also screened against other strains of bacteria and fungi, and few of them showed good antifungal activity against A. fumigatus, responsible for lung infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...