Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280709

RESUMO

BackgroundStreptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with SARS-CoV-2. MethodsWe collected saliva specimens from working-age adults receiving SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. Following bacterial culture enrichment, we tested for pneumococci by quantitative polymerase chain reaction (qPCR) targeting the lytA and piaB genes, and measured associations with SARS-CoV-2 infection via conditional logistic regression. ResultsAnalyses included 1,278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. Prevalence of pneumococcal carriage was 9.2% (117/1,278) among all participants (11.2% [63/564] clinic-based testing; 7.6% [54/714] outreach testing). Prevalence of SARS-CoV-2 infection was 27.4% (32/117) among pneumococcal carriers and 9.6% (112/1,161) among non-carriers (adjusted odds ratio [aOR]: 2.73; 95% confidence interval: 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR=4.01 [2.08-7.75]) and among symptomatic participants (aOR=3.38 [1.35-8.40]), when compared to findings within the outreach-based sample and among asymptomatic participants. Adjusted odds of SARS-CoV-2 co-infection increased 1.24 (1.00-1.55)-fold for each 1-unit decrease in piaB qPCR CT value among pneumococcal carriers. Last, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected COVID-19 case (aOR=7.64 [1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and non-carriers, respectively). ConclusionsAssociations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2. Key pointsO_LIIn an adult ambulatory and community sample, SARS-CoV-2 infection was more prevalent among pneumococcal carriers than non-carriers. C_LIO_LIAssociations between pneumococcal carriage and SARS-CoV-2 infection were strongest among adults reporting acute symptoms and receiving SARS-CoV-2 testing in a clinical setting. C_LI

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280476

RESUMO

BackgroundWhether vaccination or natural infection provides greater benefit regarding the development of sustained immunity against SARS-CoV-2 remains unknown. Therefore, the aim of this study was to provide a direct comparison of IgG durability in vaccinated and unvaccinated adults. MethodsThis was a prospective, cross-sectional study of antibody durability in 1087 individuals with a median (IQR) age of 42 (35, 52) years who were unvaccinated and previously infected with SARS-CoV-2 (Arm 1, n=351) or vaccinated against the virus (Arm 2, n=737). Participants self-reported vaccination and infection history and provided self-collected serology samples using mailed collection kits. ResultsAnti-S1 IgG seroprevalence was 15.6% higher in vaccinated versus unvaccinated, previously-infected individuals across intervals ranging from 1 to 12 months and antibody survival was sustained near 100% through 12 months in the vaccinated group. ConclusionsThese findings suggest that vaccination as opposed to natural infection alone provides significant advantages in terms of sustained and effective immunity against prior variants of SARS-CoV-2. Future efforts to characterize SARS-CoV-2 immune responses should address hybrid immunity, booster status and formulation, and protection against (sub)variants of Omicron and future lineages, as well as weigh the potential impact of other immune system mechanisms.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277607

RESUMO

BackgroundInfections with respiratory viruses (e.g., influenza, RSV) can increase the risk of severe pneumococcal infections. Likewise, pneumococcal co-infection is associated with poorer outcomes in viral respiratory infection. However, there are limited data describing the frequency of pneumococcus and SARS-CoV-2 co-infection and the role of co-infection in influencing COVID-19 severity. MethodsThe study included patients admitted to Yale-New Haven Hospital who were symptomatic for respiratory infection and tested positive for SARS-CoV-2 during March-August 2020. Patients were tested for pneumococcus through culture-enrichment of saliva followed by RT-qPCR (to identify carriage) and serotype-specific urine antigen detection (UAD) assays (to identify presumed lower respiratory tract pneumococcal disease). ResultsAmong 148 subjects, the median age was 65 years; 54.7% were male; 50.7% had an ICU stay; 64.9% received antibiotics; 14.9% died while admitted. Pneumococcal carriage was detected in 3/96 (3.1%) individuals tested by saliva RT-qPCR. Additionally, pneumococcus was detected in 14/127 (11.0%) individuals tested by UAD, and more commonly in severe than moderate COVID-19 (OR: 2.20; 95% CI: [0.72, 7.48]); however, the numbers were small with a high degree of uncertainty. None of the UAD-positive individuals died. ConclusionsPneumococcal LRTI, as detected by positive UAD, occurred in patients hospitalized with COVID-19. Moreover, pneumococcal LRTI was more common in those with more serious COVID-19 outcomes. Future studies should assess how pneumococcus and SARS-CoV-2 interact to influence COVID-19 severity in hospitalized patients. One Sentence SummaryPneumococcal lower respiratory tract infection, as detected by positive UAD, occurred in patients hospitalized with COVID-19 at rates similar to those reported prepandemic.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276654

RESUMO

BackgroundReported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. MethodsBetween October 2020-August 2021, couples living in the Greater New Haven Area were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct-values for piaB were less than 40. ResultsWe collected 567 saliva samples from 95 individuals aged 60 years and above (47 household pairs and one singleton). Of those, 7.1% of samples tested positive for pneumococcus by either piaB only (n=6) or both piaB and lytA (n=34), representing 22/95 (23.2%) individuals and 16/48 (33.3%) households over the course of the 10-week study period. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school aged children (i.e., 2-9 year olds) had a higher prevalence of carriage (15.9% vs 5.4%). ConclusionsDespite COVID-19-related disruptions, a large proportion of older adults carried pneumococcus at least once during the 10-week study period. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274434

RESUMO

BackgroundWhile considerable attention was placed on SARS-CoV-2 testing and surveillance programs in the K-12 setting, younger age groups in childcare centers were largely overlooked. Childcare facilities are vital to communities, allowing parents/guardians to remain at work and providing safe environments for both children and staff. Therefore, early in the COVID-19 pandemic, we established a PCR-based COVID-19 surveillance program in childcare facilities, testing children and staff with the goal of collecting actionable public health data and aiding communities in the progressive resumption of standard operations and ways of life. In this study we describe the development of a weekly saliva testing program and provide early results from our experience implementing this in childcare centers. MethodsWe enrolled children (aged 6 months to 7 years) and staff at 8 childcare facilities and trained participants in saliva collection using video chat technology. Weekly surveys were sent out to assess exposures, symptoms, and vaccination status changes. Participants submitted weekly saliva samples at school. Samples were transported to a partnering clinical laboratory for RT-PCR testing using SalivaDirect and results were uploaded to each participants online patient portal within 24 hours. ResultsThis study fostered a cooperative partnership with participating childcare centers, parents/guardians, and staff with the goal of mitigating COVID-19 transmission in childcare centers. Age-related challenges in saliva collection were overcome by working with parents/guardians to conceptualize new collection strategies and by offering parents/guardians continued virtual guidance and support. ConclusionSARS-CoV-2 screening and routine testing programs have focused less on the childcare population, resulting in knowledge gaps in this critical age group, especially as many are still ineligible for vaccination. SalivaDirect testing for SARS-CoV-2 provides a feasible method of asymptomatic screening and symptomatic testing for children and childcare center staff. Given the relative aversion to nasal swabs in the childcare age group, especially as a routine surveillance tool, an at-home saliva collection method provides an attractive alternative. Results can be shared rapidly electronically through participants private medical chart portals, and video chat technology allows for discussion and instruction between investigators and participants.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270653

RESUMO

BackgroundThe Omicron SARS-CoV-2 variant resulted in significant community-based transmission. Numerous occupational settings have employed surveillance testing strategies to minimize occupational exposure and return workers safely to work following isolation. MethodsFrom an occupational COVID-19 testing program, we obtained longitudinal (February 2021-January 2022) saliva-based RT-qPCR results and starting December 27th, 2021, daily on-site molecular over-the-counter (OTC) nasal swab-based isothermal nucleic acid amplification test (molecular OTC; Cue Health COVID-19 test) results. We quantified the fraction of tests with PCR cycle threshold (Ct) values <30 on each day post detection from suspected and confirmed Omicron infections (n=37), compared results to molecular OTC testing, and measured workplace and household transmission. We evaluated return-to-work timing using a post-isolation, two-test threshold of Ct >30, or two negative molecular OTC tests over a 24 hour period, or a single PCR test >30 plus negative molecular OTC test. ResultsFrom the paired testing cohort, 37 (48%) individuals tested positive; all 37 were vaccinated. All individuals tested positive [≤]1 day after a previous negative test, and 19 (51.3%) remained PCR-positive with Ct values <30 at day 5. While 3 (8.1%) remained PCR-positive with a Ct value <30 on day 10, no individuals remained PCR-positive on day 12. The average time to PCR clearance/return-to-work was 7.94 days (median=9.5 days). Time to clearance for those boosted (n=8; 7.75 days) and those not yet boosted (8.04 days) did not differ (p=0.49). Peak viral load measured by PCR was 1.97 days from the initial positive test. There were no cases of transmission after returning to work. ConclusionsA large percentage of individuals remain contagious at day 5 post first positive test based on serial PCR testing and can continue until day 12. Early discontinuation of isolation can utilize a two test framework separated by 24 hours. Rapid onsite tests may be useful.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269390

RESUMO

The key to limiting SARS-CoV-2 spread is to identify virus-infected individuals (both symptomatic and asymptomatic) and isolate them from the general population. Hence, routine weekly testing for SARS-CoV-2 in all asymptomatic (capturing both infected and non-infected) individuals is considered critical in situations where a large number of individuals congregate such as schools, prisons, aged care facilities and industrial workplaces. Such testing is hampered by operational issues such as cost, test availability, access to healthcare workers and throughput. We developed the SalivaDirect RT-qPCR assay to increase access to SARS-CoV-2 testing via a low-cost, streamlined protocol using self-collected saliva. To expand the single sample testing protocol, we explored multiple extraction-free pooled saliva testing workflows prior to testing with the SalivaDirect assay. A pool size of five, with or without heat inactivation at 65{degrees}C for 15 minutes prior to testing resulted in a positive agreement of 98% and 89%, respectively, and an increased Ct value shift of 1.37 and 1.99 as compared to individual testing of the positive clinical saliva specimens. Applying this shift in Ct value to 316 individual, sequentially collected, SARS-CoV-2 positive saliva specimen results reported from six clinical laboratories using the original SalivaDirect assay, 100% of the samples would have been detected (Ct value >45) had they been tested in the 1:5 pool strategy. The availability of multiple pooled testing workflows for laboratories can increase test turnaround time, permitting results in a more actionable time frame while minimizing testing costs and changes to laboratory operational flow.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268770

RESUMO

The performance of Covid-19 diagnostic tests must continue to be reassessed with new variants of concern. The objective of this study was to describe the discordance in saliva SARS-CoV-2 PCR and nasal rapid antigen test results during the early infectious period. We identified a high-risk occupational case cohort of 30 individuals with daily testing during an Omicron outbreak in December 2021. Based on viral load and transmissions confirmed through epidemiological investigation, most Omicron cases were infectious for several days before being detectable by rapid antigen tests.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268334

RESUMO

Early in the pandemic, a simple, open-source, RNA extraction-free RT-qPCR protocol for SARS-CoV-2 detection in saliva was developed and made widely available. This simplified approach (SalivaDirect) requires only sample treatment with proteinase K prior to PCR testing. However, feedback from clinical laboratories highlighted a need for a flexible workflow that can be seamlessly integrated into their current health and safety requirements for the receiving and handling of potentially infectious samples. To address these varying needs, we explored additional pre-PCR workflows. We built upon the original SalivaDirect workflow to include an initial incubation step (95{degrees}C for 30 minutes, 95{degrees}C for 5 minutes or 65{degrees}C for 15 minutes) with or without addition of proteinase K. The limit of detection for the workflows tested did not significantly differ from that of the original SalivaDirect workflow. When tested on de-identified saliva samples from confirmed COVID-19 individuals, these workflows also produced comparable virus detection and assay sensitivities, as determined by RT-qPCR analysis. Exclusion of proteinase K did not negatively affect the sensitivity of the assay. The addition of multiple heat pretreatment options to the SalivaDirect protocol increases the accessibility of this cost-effective SARS-CoV-2 test as it gives diagnostic laboratories the flexibility to implement the workflow which best suits their safety protocols.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261746

RESUMO

The COVID-19 pandemic has highlighted the need and benefits for all communities to be permitted timely access to on-demand screening for infectious respiratory diseases. This can be achieved with simplified testing approaches and affordable access to core resources. While RT-qPCR-based tests remain the gold standard for SARS-CoV-2 detection due to their high sensitivity, implementation of testing requires high upfront costs to obtain the necessary instrumentation. This is particularly restrictive in low-resource settings. The Ubiquitome Liberty16 system was developed as an inexpensive, portable, battery-operated single-channel RT-qPCR device with an associated iPhone app to simplify assay set-up and data reporting. When coupled with the SalivaDirect protocol for testing saliva samples for SARS-CoV-2, the Liberty16 device yielded a limit of detection (LOD) of 12 SARS-CoV-2 RNA copies/{micro}L, comparable to the upper end of the LOD range for the standard SalivaDirect protocol when performed on larger RT-qPCR instruments. While further optimization may deliver even greater sensitivity and assay speed, findings from this study indicate that small portable devices such as the Liberty16 can deliver reliable results and provide the opportunity to further increase access to gold standard SARS-CoV-2 testing.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259289

RESUMO

Genomic sequencing is crucial to understanding the epidemiology and evolution of SARS-CoV-2. Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal swabs, as input into whole genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays, however saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from nasopharyngeal swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255440

RESUMO

Pooled testing for SARS-CoV-2 detection is instrumental for increasing test capacity while decreasing test cost, key factors for sustainable, long-term surveillance measures. While numerous pooled approaches have been described, uptake by labs has been limited. We surveyed 90 US labs to understand the barriers to implementing pooled testing.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253992

RESUMO

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patients immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251464

RESUMO

The negative impact of continued school closures during the height of the COVID-19 pandemic warrants the establishment of new cost-effective strategies for surveillance and screening to safely reopen and monitor for potential in-school transmission. Here, we present a novel approach to increase the availability of repetitive and routine Covid-19 testing that may ultimately reduce the overall viral burden in the community. We describe implementation of a testing program that included students, faculty and staff from K-12 schools and universities participating in the SalivaClear pooled surveillance method (Mirimus Clinical Labs, Brooklyn, NY). Over 400,000 saliva specimens were self-collected from students, faculty and staff from 93 K-12 schools and 18 universities and tested in pools of up to 24 samples over a 20-week period during this pandemic. Peaks of positive cases were seen in the days following the Halloween, Thanksgiving and New Year holidays. Pooled testing did not significantly alter the sensitivity of the molecular assay in terms of both qualitative (100% detection rate on both pooled and individual samples) and quantitative (comparable cycle threshold (CT) values between pooled and individual samples) measures. Pooling samples substantially reduced the costs associated with PCR testing and allowed schools to rapidly assess transmission and adjust prevention protocols as necessary. By establishing low-cost, weekly testing of students and faculty, pooled saliva analysis enabled schools to determine whether transmission had occurred, make data-driven decisions, and adjust safety protocols. Pooled testing is a fundamental component to the reopening of schools, minimizing transmission among students and faculty.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250946

RESUMO

There is an urgent need to expand testing for SARS-CoV-2 and other respiratory pathogens as the global community struggles to control the COVID-19 pandemic. Current diagnostic methods can be affected by supply chain bottlenecks and require the assistance of medical professionals, impeding the implementation of large-scale testing. Self-collection of saliva may solve these problems, as it can be completed without specialized training and uses generic materials. In this study, we observed thirty individuals who self-collected saliva using four different collection devices and analyzed their feedback. Two of these devices, a funnel and bulb pipette, were used to evaluate at-home saliva collection by 60 individuals. All devices enabled the safe, unsupervised self-collection of saliva. The quantity and quality of the samples received were acceptable for SARS-CoV-2 diagnostic testing, as determined by RNase P detection. Here, we demonstrate inexpensive, generic, buffer free collection devices suitable for unsupervised and home saliva self-collection.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250637

RESUMO

SARS-CoV-2 infection has so far affected over 42 million people worldwide, causing over 1.1 million deaths. With the large majority of SARS-CoV-2 infected individuals being asymptomatic, major concerns have been raised about possible long-term consequences of the infection. We developed an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from COVID-19 patients whose diagnosis was confirmed by PCR from nasopharyngeal swabs (NP-PCR+). The study used a collection of 233 urine samples from 132 participants from Yale New Haven Hospital and the Childrens Hospital of Philadelphia obtained during the pandemic (106 NP-PCR+ and 26 NP-PCR-) as well as a collection of 20 urine samples from 20 individuals collected before the pandemic. Our analysis identified 23 out of 91 (25%) NP-PCR+ adult participants with SARS-CoV-2 spike S1 protein in urine (Ur-S+). Interestingly, although all NP-PCR+ children were Ur-S-, 1 NP-PCR-child was found to be positive for spike protein in urine. Of the 23 Ur-S+ adults, only 1 individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of NP-PCR+ adults have high levels of albumin and cystatin C in urine, respectively. Among individuals with albuminuria (>0.3 mg/mg of creatinine) statistical correlation could be found between albumin and spike protein in urine. Together, our data showe that 1 of 4 of SARS-CoV-2 infected individuals develop renal abnormalities such as albuminuria. Awareness about the long-term impact of these findings is warranted.

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249236

RESUMO

While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load - as measured by saliva but not nasopharyngeal -- is a dynamic unifying correlate of disease presentation, severity, and mortality over time.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247205

RESUMO

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-8. While pathological innate immune activation is well documented in severe disease1, the impact of autoantibodies on disease progression is less defined. Here, we used a high-throughput autoantibody discovery technique called Rapid Extracellular Antigen Profiling (REAP) to screen a cohort of 194 SARS-CoV-2 infected COVID-19 patients and healthcare workers for autoantibodies against 2,770 extracellular and secreted proteins (the "exoproteome"). We found that COVID-19 patients exhibit dramatic increases in autoantibody reactivities compared to uninfected controls, with a high prevalence of autoantibodies against immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins. We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signaling and by altering peripheral immune cell composition, and found that murine surrogates of these autoantibodies exacerbate disease severity in a mouse model of SARS-CoV-2 infection. Analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics and disease severity. In summary, these findings implicate a pathological role for exoproteome-directed autoantibodies in COVID-19 with diverse impacts on immune functionality and associations with clinical outcomes.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20188813

RESUMO

BackgroundHealthcare workers (HCW) treating COVID-19 patients are at high risk for infection and may also spread infection through their contact with vulnerable patients. Smell loss has been associated with SARS-CoV-2 infection, but it is unknown whether monitoring for smell loss can be used to identify asymptomatic infection among high risk individuals, like HCW. MethodsWe performed a prospective cohort study, tracking 473 HCW across three months to determine if smell loss could predict SARS-CoV-2 infection in this high-risk group. HCW subjects completed a longitudinal, novel behavioral at-home assessment of smell function with household items, as well as detailed symptom surveys that included a parosmia screening questionnaire, and RT-qPCR testing to identify SARSCoV-2 infection. ResultsSARS-CoV-2 was identified in 17 (3.6%) of 473 HCW. Among the 17 infected HCW, 53% reported smell loss, and were more likely to report smell loss than COVID-negative HCW on both the at-home assessment and the screening questionnaire (P < .01). 67% reported smell loss prior to having a positive SARS-CoV-2 test, and smell loss was reported a median of two days before testing positive. Neurological symptoms were reported more frequently among COVID-positive HCW who reported smell loss (P < .01). ConclusionsIn this prospective study of HCW, self-reported changes in smell using two different measures were predictive of COVID-19 infection. Smell loss frequently preceded a positive test and was associated with neurological symptoms.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20183830

RESUMO

Expanding testing capabilities is integral to managing the further spread of SARS-CoV-2 and developing reopening strategies, particularly in regards to identifying and isolating asymptomatic and pre-symptomatic individuals. Central to meeting testing demands are specimens that can be easily and reliably collected and laboratory capacity to rapidly ramp up to scale. We and others have demonstrated that high and consistent levels of SARS-CoV-2 RNA can be detected in saliva from COVID-19 inpatients, outpatients, and asymptomatic individuals. As saliva collection is non-invasive, extending this strategy to test pooled saliva samples from multiple individuals could thus provide a simple method to expand testing capacity. However, hesitation towards pooled sample testing arises due to the dilution of positive samples, potentially shifting weakly positive samples below the detection limit for SARS-CoV-2 and thereby decreasing the sensitivity. Here, we investigated the potential of pooling saliva samples by 5, 10, and 20 samples prior to RNA extraction and RT-qPCR detection of SARS-CoV-2. Based on samples tested, we conservatively estimated a reduction of 7.41%, 11.11%, and 14.81% sensitivity, for each of the pool sizes, respectively. Using these estimates we modeled anticipated changes in RT-qPCR cycle threshold to show the practical impact of pooling on results of SARS-CoV-2 testing. In tested populations with greater than 3% prevalence, testing samples in pools of 5 requires the least overall number of tests. Below 1% however, pools of 10 or 20 are more beneficial and likely more supportive of ongoing surveillance strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...