Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(5): 464-470, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941360

RESUMO

Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.

2.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630557

RESUMO

Stingless bee honey has a distinctive flavor and sour taste compared to Apis mellifera honey. Currently, interest in farming stingless bees is growing among rural residents to meet the high demand for raw honey and honey-based products. Several studies on stingless bee honey have revealed various therapeutic properties for wound healing applications. These include antioxidant, antibacterial, anti-inflammatory, and moisturizing properties related to wound healing. The development of stingless bee honey for wound healing applications, such as incorporation into hydrogels, has attracted researchers worldwide. As a result, the effectiveness of stingless bee honey against wound infections can be improved in the future to optimize healing rates. This paper reviewed the physicochemical and therapeutic properties of stingless bee honey and its efficacy in treating wound infection, as well as the incorporation of stingless bee honey into hydrogels for optimized wound dressing.


Assuntos
Mel , Animais , Anti-Inflamatórios , Antioxidantes , Abelhas , Hidrogéis , Cicatrização
3.
Pharmaceutics ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834315

RESUMO

Transdermal drug delivery systems (TDDS) have drawn more interest from pharmaceutical scientists because they could provide steady blood levels and prevent the first-pass metabolism over a longer period. Polyvinyl alcohol (PVA) has been widely used in this application due to its biocompatibility, non-toxicity, nanofiber and hydrogel-forming ability. Despite those benefits, their morphology would easily be destroyed by continuous water absorption and contribute to burst drug release due to its hydrophilicity. The aim of this study was to prepare the diclofenac sodium (DS)-medicated dual layer PVA patch using a combination of electrospinning and cryogelation (freeze-thaw) methods to improve the physicochemical properties and drug compatibility and investigate the release of the DS-medicated dual layer PVA patch. Morphological observations using scanning electron microscopy (SEM) verified the polymer-polymer interaction between both layers, whereas Fourier transform infrared (FTIR) spectroscopy has demonstrated the compatibility of DS in PVA matrix up to 2% w/v of PVA volume. The DS loads were found amorphously distributed efficaciously in PVA matrix as no visible spectra of DS-PVA interaction were detected. The DS-medicated dual layer PVA patch with a thicker nanofiber layer (3-milliliter running volume), three freeze-thaw cycles and 2% DS loading labeled as 2%DLB3C show the lowest swelling capacity (18.47%). The in vitro assessment using Franz diffusion cells showed that the 2%DLB3C indicates a better sustained release of DS, with 53.26% of the DS being released after 12 h. The 2%DLB3C owned a flux (Jss) of 0.256 mg/cm2/h and a permeability coefficient (Kp) value of 0.020 cm/h. Thus, the results demonstrate that DS-medicated dual layer PVA patches prepared via a combination of electrospinning and cryogelation are capable of releasing drugs for up to 24 h and can serve as a drug reservoir in the skin, thereby extending the pharmacologic effects of DS.

4.
Polymers (Basel) ; 13(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771168

RESUMO

Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe challenge for orthopaedic and reconstructive bone tissue. We synthesized polymeric composite material from arabinoxylan (ARX), ß-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO), acrylic acid (AAc) through free radical polymerization and porous scaffold fabricated using the freeze-drying technique. These fabricated porous scaffolds were then coated with chitosan solution to enhance their biological activities. The complex structure of BG, nHAp, GO was studied through various characterization and biological assays. The structural, morphological, wetting and mechanical analyses were determined using FT-IR, XRD, XPS, SEM/EXD, water contact angle and UTM. The swelling (aqueous and PBS media) and degradation (PBS media) observed their behavior in contact with body fluid. The biological activities were conducted against mouse pre-osteoblast cell lines. The result found that BGH3 has desirable morphological, structural with optimum swelling, degradation, and mechanical behavior. It was also found to be cytocompatible against MC3T3-E1 cell lines. The obtained results confirmed that the fabricated polymeric scaffolds would be a potential bone substitute to regenerate defective bone with different loading bearing applications for bone tissue engineering.

5.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641480

RESUMO

The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Quitosana/química , Galactanos/química , Hidrogéis/administração & dosagem , Mananas/química , Gomas Vegetais/química , Álcool de Polivinil/química , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Bandagens , Liberação Controlada de Fármacos , Hidrogéis/química
6.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578025

RESUMO

The composite hydrogels were produced using the solution casting method due to the non-toxic and biocompatible nature of chitosan (CS)/polyvinyl alcohol (PVA). The best composition was chosen and crosslinked with tetraethyl orthosilicate (TEOS), after which different amounts of graphene oxide (GO) were added to develop composite hydrogels. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle was used to analyze the hydrogels. The samples were also evaluated for swelling abilities in various mediums. The drug release profile was studied in phosphate-buffered saline (PBS) at a pH of 7.4. To predict the mechanism of drug release, the data were fitted into kinetic models. Finally, antibacterial activity and cell viability data were obtained. FTIR studies revealed the successful synthesis of CS/PVA hydrogels and GO/CS/PVA in hydrogel composite. SEM showed no phase separation of the polymers, whereas AFM showed a decrease in surface roughness with an increase in GO content. 100 µL of crosslinker was the critical concentration at which the sample displayed excellent swelling and preserved its structure. Both the crosslinked and composite hydrogel showed good swelling. The most acceptable mechanism of drug release is diffusion-controlled, and it obeys Fick's law of diffusion for drug released. The best fitting of the zero-order, Hixson-Crowell and Higuchi models supported our assumption. The GO/CS/PVA hydrogel composite showed better antibacterial and cell viability behaviors. They can be better biomaterials in biomedical applications.

7.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34503006

RESUMO

Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC's fibre collapse phenomenon (i.e., its inability to reabsorb water after dehydration) is one of the drawbacks that limit its potential. To overcome this, a catalyst-free thermal crosslinking reaction was employed to modify BC using citric acid (CA) without compromising its biocompatibility. FTIR, XRD, SEM/EDX, TGA, and tensile analysis were carried out to evaluate the properties of the modified BC (MBC). The results confirm the fibre crosslinking phenomenon and the improvement of some properties that could be advantageous for various applications. The modified nanofibre displayed an improved crystallinity and thermal stability with increased water absorption/swelling and tensile modulus. The MBC reported here can be used for wound dressings and tissue scaffolding.

8.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372062

RESUMO

The aim of this study is to prepare a dual layer polyvinyl (PVA) patch using a combination of electrospinning techniques and cryogelation (freeze-thaw process) then subsequently to investigate the effect of freeze-thaw cycles, nanofiber thickness, and diclofenac sodium (DS) loading on the physicochemical and mechanical properties and formulation of dual layer PVA patches composed of electrospun PVA nanofibers and PVA cryogel. After the successful preparation of the dual layer PVA patch, the prepared patch was subjected to investigation to assess the effect of freeze-thaw cycles, nanofiber thickness and percentages of DS loading on the morphology, physiochemical and mechanical properties. Various spectroscopic techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), water contact angle, and tensile tests were used to evaluate the physicochemical and mechanical properties of prepared dual layer PVA patches. The morphological structures of the dual layer PVA patch demonstrated the effectiveness of both techniques. The effect of freeze-thaw cycles, nanofiber thickness, and DS percentage loading on the crystallinity of a dual layer PVA patch was investigated using XRD analysis. The presence of a distinct DS peak in the FTIR spectrum indicates the compatibility of DS in a dual layer PVA patch through in-situ loading. All prepared patches were considered highly hydrophilic because the data obtained was less than 90°. The increasing saturation of DS within the PVA matrix increases the tensile strength of prepared patches, however decreased its elasticity. Evidently, the increasing of electrospun PVA nanofibers thickness, freeze-thaw cycles, and the DS saturation has improved the physicochemical and mechanical properties of the DS medicated dual layer PVA patches, making them a promising biomaterial for transdermal drug delivery applications.

9.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372132

RESUMO

Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...