Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(39): 36534-36542, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810643

RESUMO

Self-diffusion in a bitumen emulsion was studied by 1H NMR. The emulsion forms two phases: continuous and dispersed. The continuous aqueous phase contains mainly water, with the energy of activation of the diffusion process equal to that of bulk water, while its diffusivity is smaller than that of bulk water by a factor of 2. The dispersed phase consists of bitumen droplets containing confined water, whose dynamics is characterized by a fully restricted diffusion regime in cavities with sizes of ∼0.11 µm. Therefore, the studied bitumen emulsion can be described by a model of a complex multiple emulsion of the water/oil/water (WOW) type. The suggested model does agree well with data from 1H NMR spectroscopy and diffusometry of the bitumen emulsion doped with paramagnetic MnSO4(aq) as well as with an additional 1H NMR study of the emulsion structure, in which emulsion stability was compromised by freezing at 253 K.

2.
Small ; 19(43): e2300912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395635

RESUMO

A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.

3.
Phys Chem Chem Phys ; 25(20): 14538-14545, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191082

RESUMO

Some aprotic and protic ionic liquids (ILs) containing nitrate anion demonstrate unusual dynamic behavior of cations when these ILs are enclosed in micrometer-spaced layers between glass plates. We applied 17O and 15N NMR spectroscopy to discover the state and transformations of 17O and 15N isotopically enriched nitrate anion of ethylammonium nitrate (EAN) enclosed between glass plates. 15N NMR spectra demonstrated preferential orientation of the principal axes of the nitrate anions perpendicular to the normal of the glass surface. Therefore, isotropic ionic liquid EAN, when placed within a micrometer-spaced enclosure, forms an ordered phase, which is similar to a liquid crystal. The peculiarity of this phase is that the cations do not have a predominant orientation. Other features of this phase that are typical for liquid crystal phases are the changed local and translational dynamics in comparison with the isotropic state and slow transformation occurring under the action of an external magnetic field.

4.
ACS Omega ; 8(12): 11381-11396, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008136

RESUMO

The exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (13C CP-MAS NMR), and direct-excitation 31P MAS NMR suggested the formation of C-O-P covalent bonds and urethane chemical bridges. Scanning electron microscopy/energy-dispersive X-ray spectrometry suggested the diffusion of ADP/urea into the cell wall. The gas evolution analyzed by thermogravimetric analysis coupled with quadrupole mass spectrometry revealed a potential grafting reaction mechanism starting with the thermal decomposition of urea. Thermal behavior showed that the FR-modified wood lowered the main decomposition temperature and promoted the formation of char residues at elevated temperatures. The FR activity was preserved even after an extensive water-leaching test, confirmed by the limiting oxygen index (LOI) and cone calorimetry. The reduction of fire hazards was achieved through the increase of the LOI to above 80%, reduction of 30% of the peak heat release rate (pHRR2), reduction of smoke production, and a longer ignition time. The modulus of elasticity of FR-modified wood increased by 40% without significantly decreasing the modulus of rupture.

5.
Dalton Trans ; 51(21): 8192-8207, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35583237

RESUMO

Solid titanium phosphate, TiP, materials hold great promise for wastewater treatment for removal of metal ions and complexes. A series of TiP materials, synthesised at mild conditions and short reaction times, have been structurally characterised using solid-state X-ray absorption spectroscopy, phosphorus and titanium K edge XANES and EXAFS, and 31P and 47/49Ti NMR spectroscopy. The titanium K edge EXAFS data of α-Ti(HPO4)2·H2O (α-TiP) revealed octahedral coordination of oxygens around titanium. Repeated washing of primary ß-/γ-TiP with hydrochloric acid results in formation of a weakly ordered solid, TiO(OH)(H2PO4)·H2O, TiP1-H. The structure of TiP1-H is shown by Ti EXAFS to be a titanyl compound, containing a short TiO bond. The analogous data for linked titanium phosphate compounds (LTP) disclosed that inter-linkage occurs between α-TiP and titanyl phosphate units, supported by 31P-31P NOESY NMR data. 47/49Ti NMR and Ti pre-edge XANES show evidence of two different titanium environments in LTP, one very similar to that observed in TiP1-H and a second more symmetric octahedral environment. Data are discussed in terms of induced acidic hydrolyses of titanium(IV) and phosphate counterpart during washings with hydrochloric acid and water. A straightforward relation between synthesis parameters/post synthetic treatment and structural re-arrangement in the materials is established.

6.
Magn Reson Imaging ; 85: 102-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678437

RESUMO

Self-diffusion of ions in the protic ionic liquid ethylammonium nitrate (EAN) was studied by 1H NMR pulsed field gradient techniques between 294 and 393 K in the presence of a PTFE insert in a 5-mm NMR tube. At all temperatures, the bulk diffusion of ions (measured by 1H and 15N NMR) can be described by a unique diffusion coefficient. The presence of solid hydrophobic surfaces of PTFE induces regions of EAN in their vicinity, where diffusion of ions, both cations and anions, is reduced compared to the bulk values. An additional line-shape analysis in 1H NMR spectra showed that local mobility of ethylammonium cations in the surface layers near PTFE is also reduced.


Assuntos
Líquidos Iônicos , Compostos de Amônio Quaternário , Difusão , Líquidos Iônicos/química , Politetrafluoretileno , Compostos de Amônio Quaternário/química
7.
Phys Chem Chem Phys ; 23(10): 6190-6203, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33687391

RESUMO

It was found that Li[BOB]·nH2O salts were not readily suitable for the synthesis of high-purity orthoborate-based tetraalkylphosphonium ionic liquids, as exemplified here for trihexyl(tetradecyl)phosphonium bis(oxalato)borate, [P6,6,6,14][BOB]; along with [BOB]-, a metastable transition anionic complex (TAC) of dihydroxy(oxalato)borate with oxalic acid, [B(C2O4)(OH)2·(HOOC-COOH)]-, was also formed and passed into the ionic liquid in the course of the metathesis reaction with trihexyl(tetradecyl)phosphonium chloride. On the contrary, Na[BOB] was found to be a more suitable reagent for the synthesis of this IL, because [BOB]- anions safely passed into the final IL without hydrolysis, when metathesis reactions were performed using aqueous-free media. Since ultra-pure Na[BOB] is not commercially available, in this work, a preparation protocol for ultra-pure (>99%) Na[BOB] was developed: (i) molar ratios of boric and oxalic acids were optimised to minimise boron-containing impurities, (ii) the Na[BOB] product was thoroughly purified by sequential washing of a fine powder product in hot acetonitrile and ethanol and (iii) characterised using powder X-ray diffraction and solid-state 11B MAS NMR spectroscopy. The physico-chemical properties of the prepared boron-impurity-free IL, i.e., its density, viscosity, electric conductivity, glass-transition temperature and thermal stability, were found to be significantly different from those of the previously reported [P6,6,6,14][BOB], containing ca. 45 mol% of TAC, [B(C2O4)(OH)2·(HOOC-COOH)]-. It was found that a high-purity [P6,6,6,14][BOB] prepared in this work has a considerably lower viscosity, a higher viscosity index and a wider electro-chemical window (ECW) compared to those of the sample of [P6,6,6,14][BOB] with ca. 45 mol% of TAC. Interestingly, [B(C2O4)(OH)2·(HOOC-COOH)]- in the latter sample almost completely transformed into [BOB]- anions upon heating of the IL sample at 413 K for 1 hour, as confirmed using both 11B and 13C NMR. Therefore, in this work, apart from a well-optimised synthetic protocol for boron-impurity-free [P6,6,6,14][BOB], implications of boron-containing transition anionic complexes in tetraalkylphosphonium-orthoborate ILs used in different applications were highlighted.

8.
RSC Adv ; 11(45): 27868-27879, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480736

RESUMO

Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure-function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11-20 of the protein ß-lactoglobulin (ß-LG11-20), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of 13C and 15N resonances in the solid-state NMR spectra for the ß-LG11-20 fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the ß-LG11-20 fibrils were probed using NMR experiments of the peptide with 13C- and 15N-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel ß-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel ß-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible.

9.
Magn Reson Imaging ; 74: 84-89, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949669

RESUMO

Some ionic liquids (ILs) change their dynamic properties when placed in a confinement between polar surfaces (Filippov et al., Phys. Chem. Chem. Phys. 2018, 20, 6316). The diffusivities of ions and NMR relaxation times in these ILs also reversibly change under a strong static magnetic field. The mechanisms of these phenomena are not clear, but it has been suggested that they involve modified hydrogen-bonding networks formed in these ILs in the presence of polar surfaces. To obtain a better understanding of these effects, we performed temperature-dependent measurements of chemical shifts and diffusion coefficients for ethylammonium nitrate (EAN) IL in the bulk phase (IB) and confined in layers with a thickness of ~4 µm between quartz plates unexposed (I phase) and exposed (IMF phase) to a static magnetic field of 9.4 T. It was shown that the NMR chemical shift of NH3 protons of EAN in the I phase is strongly shifted upfield, ~0.0145 ppm/K, which is due to weakening of the hydrogen-bonding network of the confined EAN. Exposure to the magnetic field leads to restitution of the hydrogen-bonding (H-bonding network). The temperature dependences of diffusion coefficients follow the order D(I) > D(IB) > D(IMF) and can be described by a Vogel-Fulcher-Tammann approach with variation of the pre-exponential factor, which is determined by the strength of the H-bonding network. Confinement of EAN between plates (IB â†’ I) is an endothermic process, while processes occurring in a magnetic field, I â†’ IMF and IMF â†’ I, are exothermic and endothermic, respectively.


Assuntos
Líquidos Iônicos/química , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Amônio Quaternário/química , Temperatura , Difusão , Ligação de Hidrogênio
10.
Front Chem ; 8: 119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32181239

RESUMO

Non-halogenated boron-based ionic liquids (ILs) composed of phosphonium cations and chelated orthoborate anions have high hydrolytic stability, low melting point and exceptional properties for various applications. This study is focused on ILs with the same type of cation, trihexyltetradecylphosphonium ([P6,6,6,14]+), and two orthoborate anions, such as bis(salicylato)borate ([BScB]-) and bis(oxalato)borate ([BOB]-). We compare the results of this study with our previous studies on ILs with bis(mandelato)borate ([BMB]-) and a variety of different cations (tetraalkylphosphonium, dialkylpyrrolidinium and dialkylimidazolium). The ion dynamics and phase behavior of these ILs is studied using 1H and 11B pulsed-field-gradient (PFG) NMR. PFG NMR is demonstrated to be a useful tool to elucidate the dynamics of ions in this class of phosphonium orthoborate ILs. In particular, the applicability of 11B PFG NMR for studying anions without 1H, such as [BOB]-, and the limitations of this technique to measure self-diffusion of ions in ILs are demonstrated and discussed in detail for the first time.

11.
Phys Chem Chem Phys ; 21(40): 22531-22538, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31588443

RESUMO

1-Ethyl-3-methyl-imidazolium acetate ([EMIM][OAc]) is one of the most widely used ionic liquids for various applications. This study is focussed on the chemical stability of [EMIM][OAc] on the surfaces of polar glass plates. 1H and 13C NMR spectroscopy and NMR diffusometry of [EMIM][OAc] IL confined between glass plates with a specific surface area 105-106 m-1 are thoroughly investigated. A rapid and spontaneous reaction took place on the surfaces of glass plates leading to the formation of neutral chemical moieties as evident by the appearance of new signals in the 1H NMR spectra. These new products are assigned as N-heterocyclic carbene (NHC) and acetic acid. These neutral chemical moieties have significantly increased the ion diffusivity by dissociation of the cation and the anion in [EMIM][OAc] IL. The yield and rate of formation of NHC and acetic acid are found to increase with the increasing surface area of polar glass plates and the time of contact between the IL and glass surfaces. Based on NMR spectroscopy, a dissociative reaction mechanism is proposed for the formation of free NHC in the neat [EMIM][OAc] IL.

12.
J Chem Phys ; 148(19): 193806, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307199

RESUMO

Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

13.
Phys Chem Chem Phys ; 20(9): 6316-6320, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29435522

RESUMO

Self-diffusion and NMR relaxation of the ethylammonium (EA) cation were studied in the protic ionic liquid, ethylammonium nitrate (EAN), confined between polar glass plates separated by a few µm distance and exposed to an external magnetic field of 9.4 T. The diffusion coefficient of EA (D) and the transverse NMR relaxation rate (1/T2) of -NH3 protons were increased immediately after placing the sample in the magnetic field by factors of ∼2 and ∼22, respectively, in comparison with those of bulk EAN. Further exposure of the sample to the magnetic field led to gradual changes in D, T1 and T2 towards their bulk values with a time constant of ∼70 min. Complete "recovery" of the sample to the "accelerated" D and "shortened" T2 values occurred at longer than 24 hours after the removal of the EAN sample from the magnet. Because the observed characteristic times of the change far exceed the times of molecular processes in EAN, we suggested that this phenomenon is related to reversible phase transformations occurring in confined EAN.

14.
Magn Reson Chem ; 56(2): 113-119, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28752526

RESUMO

We used 1 H pulsed field gradient nuclear magnetic resonance to study the self-diffusion of polyethylene glycol (PEG) with average molecular mass of 200 and ions in mixtures of PEG with imidazolium bis(mandelato)borate (BMB) and imidazolium bis(oxalato)borate ionic liquids (ILs). The IL was mixed with PEG in the concentration range of 0-100 wt%. Within the temperature range of 295 to 353 K, the diffusion coefficient of BMB is slower than that of the imidazolium cation. The diffusion coefficients of PEG, as well as the imidazolium cation and BMB anions, differ under all experimental conditions tested. This demonstrates that the IL in the mixture is present in at least a partially dissociated state. Generally, increasing the concentration of PEG leads to an increase in the diffusion coefficients of PEG and both the ions and decreases their activation energy for diffusion. Nuclear magnetic resonance chemical shift alteration analysis showed that the presence of PEG changes the chemical shifts of both ions but in different directions. Impedance spectroscopy was used to measure the ionic conductivity of the ILs mixed with PEG. Copyright © 2017 John Wiley & Sons, Ltd.

15.
Phys Chem Chem Phys ; 19(38): 25853-25858, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28932828

RESUMO

Diffusion of EAN confined between polar glass plates separated by a few micrometers is higher by a factor of ca. 2 as compared to bulk values. Formation of a new phase, different to the bulk, was suggested.

16.
Chem Commun (Camb) ; 53(80): 11056-11059, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28948273

RESUMO

We demonstrate the ability of multidimensional Laplace NMR (LNMR), comprising relaxation and diffusion experiments, to reveal essential information about microscopic phase structures and dynamics of ionic liquids that is not observable using conventional NMR spectroscopy or other techniques.

17.
Dalton Trans ; 45(48): 19473-19484, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27891541

RESUMO

The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13C and 15N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13C and 15N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P21/n. Both 13C and 15N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13C and 15N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.

18.
Langmuir ; 32(45): 11789-11798, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27797215

RESUMO

Pure silica zeolites are potentially hydrophobic and have therefore been considered to be interesting candidates for separating alcohols, e.g., 1-butanol, from water. Zeolites are traditionally synthesized at high pH, leading to the formation of intracrystalline defects in the form of silanol defects in the framework. These silanol groups introduce polar adsorption sites into the framework, potentially reducing the adsorption selectivity toward alcohols in alcohol/water mixtures. In contrast, zeolites prepared at neutral pH using the fluoride route contain significantly fewer defects. Such crystals should show a much higher butanol/water selectivity than crystals prepared in traditional hydroxide (OH-) media. Moreover, silanol groups are present at the external surface of the zeolite crystals; therefore, minimizing the external surface of the studied adsorbent is important. In this work, we determine adsorption isotherms of 1-butanol and water in silicalite-1 films prepared in a fluoride (F-) medium using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. This film was composed of well intergrown, plate-shaped b-oriented crystals, resulting in a low external area. Single-component adsorption isotherms of 1-butanol and water were determined in the temperature range of 35-80 °C. The 1-butanol isotherms were typical for an adsorbate showing a high affinity for a microporous material and a large increase in the amount adsorbed at low partial pressures of 1-butanol. The Langmuir-Freundlich model was successfully fitted to the 1-butanol isotherms, and the heat of adsorption was determined. Water showed a very low affinity for the adsorbent, and the amounts adsorbed were very similar to previous reports for large silicalite-1 crystals prepared in a fluoride medium. The sample also adsorbed much less water than did a reference silicalite-1(OH-) film containing a high density of internal defects.The results show that silicalite-1 films prepared in a F- medium with a low density of defects and external area are very promising for the selective recovery of 1-butanol from aqueous solutions.

19.
J Phys Chem A ; 120(42): 8326-8338, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27687143

RESUMO

Polycrystalline bis(dialkyldithiophosphato)Pt(II) complexes of the form [Pt{S2P(OR)2}2] (R = ethyl, iso-propyl, iso-butyl, sec-butyl or cyclo-hexyl group) were studied using solid-state 31P and 195Pt NMR spectroscopy, to determine the influence of R to the structure of the central chromophore. The measured anisotropic chemical shift (CS) parameters for 31P and 195Pt afford more detailed chemical and structural information, as compared to isotropic CS and J couplings alone. Advanced theoretical modeling at the hybrid DFT level, including both crystal lattice and the important relativistic spin-orbit effects qualitatively reproduced the measured CS tensors, supported the experimental analysis, and provided extensive orientational information. A particular correction model for the non-negligible lattice effects was adopted, allowing one to avoid a severe deterioration of the 195Pt anisotropic parameters due to the high requirements posed on the pseudopotential quality in such calculations. Though negligible differences were found between the 195Pt CS tensors with different substituents R, the 31P CS parameters differed significantly between the complexes, implying the potential to distinguish between them. The presented approach enables good resolution and a detailed analysis of heavy-element compounds by solid-state NMR, thus widening the understanding of such systems.

20.
J Phys Chem B ; 120(30): 7446-55, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27387981

RESUMO

Atomistic molecular dynamics simulations have been performed to investigate volumetric quantities and dynamic properties of binary trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL)/water mixtures with different water concentrations. The predicted liquid densities for typical [P6,6,6,14][BOB] IL/water mixtures are consistent with available experimental data with a relative discrepancy of less than 3%. The liquid densities and excess molar volumes of all studied [P6,6,6,14][BOB] IL/water mixtures are characterized by concave and convex features, respectively, within full water concentration range. The dynamic properties of [P6,6,6,14] cations, [BOB] anions, and water molecules are particularly analyzed through calculation of velocity autocorrelation functions, diffusion coefficients, and reorientational autocorrelation functions and correlation times. The translational and reorientational mobilities of three species become faster upon increasing water concentration in [P6,6,6,14][BOB] IL/water mixtures and present complex dynamical characteristics arising from three distinct microscopic diffusion features within the full water concentration range. The obtained striking volumetric quantities and particular dynamic properties are well correlated to microscopic liquid structural organization and distinct local ionic environment of all studied [P6,6,6,14][BOB] IL/water mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...