Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Virus Genes ; 58(2): 143-145, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35107691

RESUMO

Virus like particles (VLPs) are used as a tool to study the mutations in the structural genes that influence the virus assembly and entry process. We observed that Chikungunya VLP with the E1:V291I mutation produced more fluorescence-positive cells in Vero cells than the other mutant VLPs (E1:A226V, D284E, and E2:V264A) and wild-type VLP tested in this study. According to the findings, the V291I mutation may aid the virus's ability to enter the cells more efficiently than wild-type VLPs. The study concludes that VLP is a useful model for studying the virus entry process in cells.


Assuntos
Febre de Chikungunya , Animais , Chlorocebus aethiops , Mutação , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus
2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267278

RESUMO

BackgroundWe report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India which had caused fatal encephalitis in an adolescent male and the outbreak response which led to the successful containment of the disease and the related investigations. MethodsQuantitative real-time RT-PCR, ELISA based antibody detection and whole genome sequencing were performed to confirm the Nipah virus infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs and blood samples for Nipah virus screening by real time RT-PCR and anti-Nipah virus bat IgG ELISA. Plaque reduction neutralization test was performed for the detection of neutralizing antibodies. ResultsNipah viral RNA and anti-NiV IgG antibodies were detected in the serum of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius and 37.73% of Rousettus leschenaultia. Neutralizing antibodies against NiV could be detected in P.medius. ConclusionsStringent surveillance and awareness campaigns needs to be implemented in the area to reduce human-bat interactions and minimize spill over events which can lead to sporadic outbreaks of NiV.

3.
Arch Virol ; 166(10): 2895-2899, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34351521

RESUMO

After the 2005-2009 chikungunya epidemic, intermittent outbreaks were reported in many parts of India. The outbreaks were caused by either locally circulating strains or imported viruses. Virus transmission routes can be traced by complete genome sequencing studies. We investigated two outbreaks in 2014 and 2019 in Kerala, India. Chikungunya virus (CHIKV) was isolated from the samples, and whole genomes were sequenced for a 2014 isolate and a 2019 isolate. Phylogenetic analysis revealed that the isolates formed a separate group with a 2019 isolate from Pune, Maharashtra, and belonged to the East/Central/South African (ECSA) genotype, Indian subcontinent sublineage of the Indian Ocean Lineage (IOL). A novel mutation at amino acid position 76 of the E2 gene was observed in the group. The phylogenetic results suggest that the outbreaks might have been caused by a virus that had been circulating in India since 2014. A detailed study is needed to investigate the evolution of CHIKV in India.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Surtos de Doenças , Febre de Chikungunya/transmissão , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Genoma Viral/genética , Genótipo , Humanos , Índia/epidemiologia , Mutação , Filogenia , RNA Viral/genética , Proteínas do Envelope Viral/genética
5.
Infect Genet Evol ; 75: 103989, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376506

RESUMO

Dengue virus type 1 (DENV-1) Asian and American/African (AM/AF) genotypes were reported to be co-circulating in southern and western states of India based on envelope (E) gene sequencing of few representative samples. The objective of the present study was to develop a one-step real-time RT-PCR to discriminate between Asian and AM/AF genotypes of DENV-1 and investigate the spatio-temporal distribution of the DENV-1 genotypes in southern and western states of India. A one-step real-time RT-PCR to discriminate the Asian and AM/AF genotypes of DENV-1 was developed and validated using 40 samples (17 Asian and 23 AM/AF), for which the envelope (E) gene sequence data was available. DENV-2, DENV-3 and DENV-4 isolates, one each and DENV negative samples (n = 17) were also tested by the assay. Additional 296 samples positive for DENV-1 from selected Southern and Western states of India were genotyped using the real-time RT-PCR assay. Among the samples used for validation, the genotyping results were concordant with sequencing results for 39 samples. In the one discordant sample which was positive for AM/AF by sequencing, the genotyping assay tested positive for both Asian and AM/AF genotype. DENV-2, DENV-3 and DENV-4 isolates were not reactive in the assay. None of the DENV negative samples were positive (sensitivity 100% and specificity 98.2%). A total of 336 samples (40 samples with sequence data and 296 samples without sequence data) were used for spatio-temporal distribution analysis. The results revealed that the Asian genotype was the predominant genotype in Tamil Nadu and Kerala, the southern states. The AM/AF genotype was the predominant genotype in Maharashtra, a western state of India. In Nashik district of Maharashtra, Asian genotype was observed in 32.6% of DENV-1 samples during 2017 while the same decreased to 7.3% during 2018. In Pune district, Asian genotype was observed in 40.0% of DENV-1 samples during 2018 only. To conclude, a one step real-time RT-PCR has been developed for discriminating Asian and AM/AF genotypes of DENV-1. This assay can act as a complement to sequencing but not a substitute and can be utilized in resource limited settings for molecular surveillance of DENV-1. DENV-1 Asian genotype was the dominant genotype in South India while, AM/AF genotype was dominant in Western India.


Assuntos
Vírus da Dengue/classificação , Dengue/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas do Envelope Viral/genética , Ásia , Vírus da Dengue/genética , Genótipo , Humanos , Índia , Filogenia , Sensibilidade e Especificidade , Análise de Sequência de RNA , Análise Espaço-Temporal
6.
Indian J Med Res ; 150(6): 612-619, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-32048625

RESUMO

Background & objectives: Avian influenza (AI) viruses have been a major cause of public health concern. Wild migratory birds and contaminated environmental sources such as waterbodies soiled with bird droppings play a significant role in the transmission of AI viruses. The objective of the present study was to develop a sensitive and user-friendly method for the concentration and detection of AI viruses from environmental water sources. Methods: Municipal potable water, surface water from reservoirs and sea were spiked with low pathogenic AI viruses. To concentrate the viruses by precipitation, a combination of potassium aluminium sulphate with milk powder was used. Real-time reverse transcription-polymerase chain reaction was performed for virus detection, and the results were compared with a virus concentration method using erythrocytes. Drinking water specimens from poultry markets were also tested for the presence of AI viruses. Results: A minimum of 101.0 EID50(50% egg infectious dose)/ml spiked H5N1 and 101.7 EID50/ml spiked H9N2 viruses were detected from spiked potable water; 101.0 and 102.0 EID50/ml spiked H5N1 virus was detected from surface water and seawater samples, respectively. The present method was more sensitive than the erythrocyte-binding method as approximately 10-fold higher infectious virus titres were obtained. AI H9N2 viruses were detected and isolated from water from local poultry markets, using this method. Interpretation & conclusions: Viability and recovery of the spiked viruses were not affected by precipitation. The present method may be suitable for the detection of AI viruses from different environmental water sources and can also be applied during outbreak investigations.


Assuntos
Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Humana/diagnóstico , Animais , Animais Selvagens/virologia , Galinhas/virologia , Surtos de Doenças , Monitoramento Ambiental , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/virologia , Água/análise
7.
Virology ; 510: 40-45, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28704695

RESUMO

A large outbreak of dengue occurred in Tamil Nadu, South India in 2012 with 12,000 cases and CFR of 0.5%. Molecular characterization of virus present in the sera of dengue patients was undertaken to determine if there were changes in the virus population. All four serotypes were circulating but DENV-1 was dominant, present in 52% of the serotyped samples. Furthermore, the genotype of only DENV-1 had changed; the Asian genotype had displaced the American/African. Phylogenetic analysis revealed that the Asian genotype was introduced from Singapore and shared 99% similarity with viruses, associated with large outbreaks in Singapore and Sri Lanka. We report for the first time the emergence of the Asian genotype of DENV-1 in southern India causing an extensive and severe outbreak. The study proves how movement of DENV can affect dengue outbreaks and underscores the need for close molecular monitoring of DENV.


Assuntos
Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Dengue/epidemiologia , Dengue/virologia , Surtos de Doenças , Genótipo , Análise por Conglomerados , Vírus da Dengue/genética , Humanos , Índia/epidemiologia , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Soro/virologia
8.
J Clin Virol ; 61(1): 152-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24985196

RESUMO

BACKGROUND: An outbreak of acute encephalitis syndrome (AES) was reported in Kerala in India in May 2011. The outbreak features were unusual in terms of seasonality, geographical distribution, age group, and clinical manifestations in comparison to the epidemiological features of Japanese Encephalitis. OBJECTIVE: To detect the etiology of the acute encephalitis syndrome outbreak. STUDY DESIGN: Investigation of outbreak was undertaken by collection of brief clinical history and epidemiological details along with the specimens for viral diagnosis. The serum/CSF samples (patients=208) received from the sentinel hospitals were subjected to IgM capture ELISA and RT-PCR specific for Japanese encephalitis (JE) virus and West Nile virus (WNV). The JE/WN IgM positive samples were further tested by serum neutralization assay for the presence of JE and WNV specific neutralizing antibody. RESULT: Most of the affected patients were aged above 15 years. No spatial clustering of the disease was noticed. Cases were observed in premonsoon and early monsoon season and in JE non-endemic area of Kerala. A total of 47 patient samples were positive for in-house JE IgM capture ELISA and WNV IgM capture ELISA. Serum neutralization assay result revealed that 32 of 42 (76.19%) sera were positive for WNV neutralization antibodies. WNV was isolated from a clinical specimen. Phylogenetic analysis of WNV envelope gene revealed 99% homology with Russian Lineage 1 WNV. CONCLUSION: West Nile virus (WNV) etiology was confirmed by virus isolation and detection of virus specific antibody from clinical specimen. Phylogenetic analysis grouped the current strain in lineage I West Nile virus.


Assuntos
Surtos de Doenças , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Líquido Cefalorraquidiano/virologia , Criança , Pré-Escolar , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina M/sangue , Índia/epidemiologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/genética , Viremia , Vírus do Nilo Ocidental/imunologia
9.
Vaccine ; 27(15): 2138-43, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19356617

RESUMO

Rabies is an endemic, fatal zoonotic disease in the developing countries. Oral vaccination strategies are suitable for rabies control in developing countries. Studies were performed to investigate the suitability of poly(lactide-co-glycolide) (PLG) microspheres as an oral delivery system for beta-propiolactone inactivated concentrated rabies virus (CRV). Immune responses induced by encapsulated (PLG+CRV) and un-encapsulated inactivated rabies virus after oral and intraperitoneal route administrations were compared. The anti-rabies virus IgG antibody titer, virus neutralizing antibody (VNA) titers obtained by mouse neutralization test (MNT) and IgG2a and IgG1 titers of mice group immunized orally with PLG+CRV showed significantly (p<0.001) higher response than the group immunized orally with un-encapsulated CRV. There was no significant difference (p>0.05) between groups inoculated by intraperitoneal route. The stimulation index (SI) obtained by lymphoproliferation assay of PLG+CRV oral group also showed significantly (p<0.001) higher response than the group immunized orally with un-encapsulated CRV, suggesting that oral immunization activates Th1-mediated cellular immunity. Immunized mice of all experimental groups were challenged intracerebrally with a lethal dose of virulent rabies virus Challenge Virus Standard (CVS). The survival rates of mice immunized orally with PLG+CRV and CRV alone were 75% and 50%, respectively, whereas intraperitoneally immunized groups showed 100% protection. The overall results of humoral, cellular immune response and survival rates of mice immunized orally with PLG+CRV were significantly (p<0.001) higher than those of mice immunized orally with CRV alone. These data suggest that the PLG encapsulated inactivated rabies virus can be used for oral immunization against rabies.


Assuntos
Microesferas , Poliglactina 910/farmacologia , Vacina Antirrábica/imunologia , Raiva/prevenção & controle , Administração Oral , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cricetinae , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Injeções Intraperitoneais , Camundongos , Testes de Neutralização , Poliglactina 910/administração & dosagem , Propiolactona/farmacologia , Vacina Antirrábica/administração & dosagem , Distribuição Aleatória , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...