Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4854, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982046

RESUMO

An attractive approach to target intracellular macromolecular interfaces and to model putative drug interactions is to design small high-affinity proteins. Variable domains of the immunoglobulin heavy chain (VH domains) are ideal miniproteins, but their development has been restricted by poor intracellular stability and expression. Here we show that an autonomous and disufhide-free VH domain is suitable for intracellular studies and use it to construct a high-diversity phage display library. Using this library and affinity maturation techniques we identify VH domains with picomolar affinity against eIF4E, a protein commonly hyper-activated in cancer. We demonstrate that these molecules interact with eIF4E at the eIF4G binding site via a distinct structural pose. Intracellular overexpression of these miniproteins reduce cellular proliferation and expression of malignancy-related proteins in cancer cell lines. The linkage of high-diversity in vitro libraries with an intracellularly expressible miniprotein scaffold will facilitate the discovery of VH domains suitable for intracellular applications.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação 4F em Eucariotos , Técnicas de Visualização da Superfície Celular , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Biblioteca Gênica , Cadeias Pesadas de Imunoglobulinas/genética
2.
RSC Chem Biol ; 3(7): 916-930, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35866173

RESUMO

Identifying new binding sites and poses that modify biological function are an important step towards drug discovery. We have identified a novel disulphide constrained peptide that interacts with the cap-binding site of eIF4E, an attractive therapeutic target that is commonly overexpressed in many cancers and plays a significant role in initiating a cancer specific protein synthesis program though binding the 5'cap (7'methyl-guanoisine) moiety found on mammalian mRNAs. The use of disulphide constrained peptides to explore intracellular biological targets is limited by their lack of cell permeability and the instability of the disulphide bond in the reducing environment of the cell, loss of which results in abrogation of binding. To overcome these challenges, the cap-binding site interaction motif was placed in a hypervariable loop on an VH domain, and then selections performed to select a molecule that could recapitulate the interaction of the peptide with the target of interest in a process termed Peptide Epitope Linker Evolution (PELE). A novel VH domain was identified that interacted with the eIF4E cap binding site with a nanomolar affinity and that could be intracellularly expressed in mammalian cells. Additionally, it was demonstrated to specifically modulate eIF4E function by decreasing cap-dependent translation and cyclin D1 expression, common effects of eIF4F complex disruption.

3.
J Biol Chem ; 296: 100557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744283

RESUMO

Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Bases de Dados de Proteínas/história , História do Século XX , História do Século XXI , Conformação Proteica , Relação Estrutura-Atividade
4.
Methods Mol Biol ; 2025: 299-320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267459

RESUMO

Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.


Assuntos
Mutagênese/fisiologia , Cristalografia por Raios X/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Humanos , Mutagênese/genética , Estabilidade Proteica
5.
Nat Commun ; 4: 2901, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24352381

RESUMO

Protein stability is often a limiting factor in the development of commercial proteins and biopharmaceuticals, as well as for biochemical and structural studies. Unfortunately, identifying stabilizing mutations is not trivial since most are neutral or deleterious. Here we describe a high-throughput colony-based stability screen, which is a direct and biophysical read-out of intrinsic protein stability in contrast to traditional indirect activity-based methods. By combining the method with a random mutagenesis procedure, we successfully identify thermostable variants from 10 diverse and challenging proteins, including several biotechnologically important proteins such as a single-chain antibody, a commercial enzyme and an FDA-approved protein drug. We also show that thermostabilization of a protein drug using our approach translates into dramatic improvements in long-term stability. As the method is generic and activity independent, it can easily be applied to a wide range of proteins.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Engenharia de Proteínas/métodos , Estabilidade Proteica , Biofísica/métodos , Clonagem Molecular , Cristalografia por Raios X , Evolução Molecular Direcionada , Endopeptidases/química , Endopeptidases/genética , Biblioteca Gênica , Proteína Antagonista do Receptor de Interleucina 1/química , Proteína Antagonista do Receptor de Interleucina 1/genética , Modelos Moleculares , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...