Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 14(1): 3936, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402719

RESUMO

Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.


Assuntos
Neuroblastoma , RNA Circular , Criança , Humanos , RNA Circular/genética , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , RNA/genética , RNA/metabolismo , Neuroblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Cancer Discov ; 12(12): 2727-2729, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458435

RESUMO

SUMMARY: Single biopsies fail to reflect intratumor heterogeneity and tumor evolution. In this issue of Cancer Discovery, Bosse and colleagues show an important role for circulating cell-free tumor DNA sequencing to detect the genomic evolution of neuroblastoma under ALK inhibitor therapy and identify novel (sub)clonal pathogenic variants involved in disease progression under conventional therapy. See related article by Bosse et al., p. 2800 (5).


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neuroblastoma , Humanos , DNA Tumoral Circulante/genética , Genômica , Neuroblastoma/genética , Acetaminofen , Aspirina , Ácidos Nucleicos Livres/genética
3.
Cancers (Basel) ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35565208

RESUMO

Liquid biopsy strategies in pediatric patients are challenging due to low body weight. This study investigated cfDNA size distribution and concentration in blood, bone marrow, cerebrospinal fluid, and urine from 84 patients with neuroblastoma classified as low (n = 28), intermediate (n = 6), or high risk (n = 50) to provide key data for liquid biopsy biobanking strategies. The average volume of blood and bone marrow plasma provided ranged between 1 and 2 mL. Analysis of 637 DNA electropherograms obtained by Agilent TapeStation measurement revealed five different major profiles and characteristic DNA size distribution patterns for each of the biofluids. The proportion of samples containing primarily cfDNA was, at 85.5%, the highest for blood plasma. The median cfDNA concentration amounted to 6.28 ng/mL (blood plasma), 58.2 ng/mL (bone marrow plasma), 0.08 ng/mL (cerebrospinal fluid), and 0.49 ng/mL (urine) in samples. Meta-analysis of the dataset demonstrated that multiple cfDNA-based assays employing the same biofluid sample optimally require sampling volumes of 1 mL for blood and bone marrow plasma, 2 mL for cerebrospinal fluid, and as large as possible for urine samples. A favorable response to treatment was associated with a rapid decrease in blood-based cfDNA concentration in patients with high-risk neuroblastoma. Blood-based cfDNA concentration was not sufficient as a single parameter to indicate high-risk disease recurrence. We provide proof of concept that monitoring neuroblastoma-specific markers in very small blood volumes from infants is feasible.

4.
Clin Cancer Res ; 28(9): 1809-1820, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35247920

RESUMO

PURPOSE: Treating refractory or relapsed neuroblastoma remains challenging. Monitoring body fluids for tumor-derived molecular information indicating minimal residual disease supports more frequent diagnostic surveillance and may have the power to detect resistant subclones before they give rise to relapses. If actionable targets are identified from liquid biopsies, targeted treatment options can be considered earlier. EXPERIMENTAL DESIGN: Droplet digital PCR assays assessing MYCN and ALK copy numbers and allelic frequencies of ALK p.F1174L and ALK p.R1275Q mutations were applied to longitudinally collected liquid biopsies and matched tumor tissue samples from 31 patients with high-risk neuroblastoma. Total cell-free DNA (cfDNA) levels and marker detection were compared with data from routine clinical diagnostics. RESULTS: Total cfDNA concentrations in blood plasma from patients with high-risk neuroblastoma were higher than in healthy controls and consistently correlated with neuron-specific enolase levels and lactate dehydrogenase activity but not with 123I-meta-iodobenzylguanidine scores at relapse diagnosis. Targeted cfDNA diagnostics proved superior for early relapse detection to all current diagnostics in 2 patients. Marker analysis in cfDNA indicated intratumor heterogeneity for cell clones harboring MYCN amplifications and druggable ALK alterations that were not detectable in matched tumor tissue samples in 17 patients from our cohort. Proof of concept is provided for molecular target detection in cerebrospinal fluid from patients with isolated central nervous system relapses. CONCLUSIONS: Tumor-specific alterations can be identified and monitored during disease course in liquid biopsies from pediatric patients with high-risk neuroblastoma. This approach to cfDNA surveillance warrants further prospective validation and exploitation for diagnostic purposes and to guide therapeutic decisions.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neuroblastoma , Ácidos Nucleicos Livres/genética , Criança , DNA Tumoral Circulante/genética , Humanos , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Receptores Proteína Tirosina Quinases/genética
5.
Nat Commun ; 12(1): 6804, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815394

RESUMO

Intratumour heterogeneity is a major cause of treatment failure in cancer. We present in-depth analyses combining transcriptomic and genomic profiling with ultra-deep targeted sequencing of multiregional biopsies in 10 patients with neuroblastoma, a devastating childhood tumour. We observe high spatial and temporal heterogeneity in somatic mutations and somatic copy-number alterations which are reflected on the transcriptomic level. Mutations in some druggable target genes including ALK and FGFR1 are heterogeneous at diagnosis and/or relapse, raising the issue whether current target prioritization and molecular risk stratification procedures in single biopsies are sufficiently reliable for therapy decisions. The genetic heterogeneity in gene mutations and chromosome aberrations observed in deep analyses from patient courses suggest clonal evolution before treatment and under treatment pressure, and support early emergence of metastatic clones and ongoing chromosomal instability during disease evolution. We report continuous clonal evolution on mutational and copy number levels in neuroblastoma, and detail its implications for therapy selection, risk stratification and therapy resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Tomada de Decisão Clínica/métodos , Heterogeneidade Genética , Terapia Neoadjuvante/métodos , Neuroblastoma/terapia , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Criança , Pré-Escolar , Ensaios Clínicos Fase III como Assunto , Evolução Clonal , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Lactente , Masculino , Mutação , Terapia Neoadjuvante/estatística & dados numéricos , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco/métodos , Análise Espaço-Temporal
6.
Cancers (Basel) ; 13(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771652

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising treatment strategy, however, therapeutic success against solid tumors such as neuroblastoma remains modest. Recurrence of antigen-poor tumor variants often ultimately results in treatment failure. Using antigen-independent killing mechanisms such as the FAS receptor (FAS)-FAS ligand (FASL) axis through epigenetic manipulation may be a way to counteract the escape achieved by antigen downregulation. Analysis of public RNA-sequencing data from primary neuroblastomas revealed that a particular epigenetic modifier, the histone lysine demethylase 1A (KDM1A), correlated negatively with FAS expression. KDM1A is known to interact with TP53 to repress TP53-mediated transcriptional activation of genes, including FAS. We showed that pharmacologically blocking KDM1A activity in neuroblastoma cells with the small molecule inhibitor, SP-2509, increased FAS cell-surface expression in a strictly TP53-dependent manner. FAS upregulation sensitized neuroblastoma cells to FAS-FASL-dependent killing and augmented L1CAM-directed CAR T cell therapy against antigen-poor or even antigen-negative tumor cells in vitro. The improved therapeutic response was abrogated when the FAS-FASL interaction was abolished with an antagonistic FAS antibody. Our results show that KDM1A inhibition unleashes an antigen-independent killing mechanism via the FAS-FASL axis to make tumor cell variants that partially or totally suppress antigen expression susceptible to CAR T cell therapy.

8.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202325

RESUMO

Risk classification plays a crucial role in clinical management and therapy decisions in children with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors in single tumor biopsies at diagnosis. Growing evidence of extensive neuroblastoma intratumor heterogeneity drives the need for novel diagnostics to assess molecular profiles more comprehensively in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a pilot study investigating the feasibility and potential of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblastoma tissues of divergent current risk classification: high versus low/intermediate risk. Univariate (receiver operating characteristic analysis) and multivariate (segmentation, principal component analysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide signatures. The AHNAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were identified as proteins associated with these peptide signatures, and their differential expression in the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues. These results suggest a promising new analytical strategy improving risk classification and providing new biological insights into neuroblastoma intratumor heterogeneity.

9.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34285106

RESUMO

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor of childhood. Patients with high-risk disease undergo extremely aggressive therapy and nonetheless have cure rates below 50%. Treatment with the ch14.18 monoclonal antibody (dinutuximab beta), directed against the GD2 disialoganglioside, improved 5-year event-free survival in high-risk patients when administered in postconsolidation therapy and was recently implemented in standard therapy. Relapse still occurred in 57% of these patients, necessitating new therapeutic options. Bispecific trifunctional antibodies (trAbs) are IgG-like molecules directed against T cells and cancer surface antigens, redirecting T cells (via their CD3 specificity) and accessory immune cells (via their functioning Fc-fragment) toward tumor cells. We sought proof-of-concept for GD2/CD3-directed trAb efficacy against neuroblastoma. METHODS: We used two GD2-specific trAbs differing only in their CD3-binding specificity: EKTOMUN (GD2/human CD3) and SUREK (GD2/mouse Cd3). This allowed trAb evaluation in human and murine experimental settings. Tumor-blind trAb and the ch14.18 antibody were used as controls. A coculture model of human peripheral blood mononuclear cells (PBMCs) and neuroblastoma cell lines was established to evaluate trAb antitumor efficacy by assessing expression of T-cell surface markers for activation, proinflammatory cytokine release and cytotoxicity assays. Characteristics of tumor-infiltrating T cells and response of neuroblastoma metastases to SUREK treatment were investigated in a syngeneic immunocompetent neuroblastoma mouse model mimicking minimal residual disease. RESULTS: We show that EKTOMUN treatment caused effector cell activation and release of proinflammatory cytokines in coculture with neuroblastoma cell lines. Furthermore, EKTOMUN mediated GD2-dependent cytotoxic effects in human neuroblastoma cell lines in coculture with PBMCs, irrespective of the level of target antigen expression. This effect was dependent on the presence of accessory immune cells. Treatment with SUREK reduced the intratumor Cd4/Cd8 ratio and activated tumor infiltrating T cells in vivo. In a minimal residual disease model for neuroblastoma, we demonstrated that single-agent treatment with SUREK strongly reduced or eliminated neuroblastoma metastases in vivo. SUREK as well as EKTOMUN demonstrated superior tumor control compared with the anti-GD2 antibody, ch14.18. CONCLUSIONS: Here we provide proof-of-concept for EKTOMUN preclinical efficacy against neuroblastoma, presenting this bispecific trAb as a promising new agent to fight neuroblastoma.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Neuroblastoma/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Metástase Neoplásica
10.
J Enzyme Inhib Med Chem ; 36(1): 1282-1289, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34192988

RESUMO

The small-molecule inhibitor of phosphoglycerate dehydrogenase, NCT-503, reduces incorporation of glucose-derived carbons into serine in vitro. Here we describe an off-target effect of NCT-503 in neuroblastoma cell lines expressing divergent phosphoglycerate dehydrogenase (PHGDH) levels and single-cell clones with CRISPR-Cas9-directed PHGDH knockout or their respective wildtype controls. NCT-503 treatment strongly reduced synthesis of glucose-derived citrate in all cell models investigated compared to the inactive drug control and independent of PHGDH expression level. Incorporation of glucose-derived carbons entering the TCA cycle via pyruvate carboxylase was enhanced by NCT-503 treatment. The activity of citrate synthase was not altered by NCT-503 treatment. We also detected no change in the thermal stabilisation of citrate synthase in cellular thermal shift assays from NCT-503-treated cells. Thus, the direct cause of the observed off-target effect remains enigmatic. Our findings highlight off-target potential within a metabolic assessment of carbon usage in cells treated with the small-molecule inhibitor, NCT-503.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Piperazinas/farmacologia , Piridinas/farmacologia , Tioamidas/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/metabolismo , Humanos , Metabolômica , Fosfoglicerato Desidrogenase/genética
11.
Front Immunol ; 12: 689697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267756

RESUMO

Chimeric antigen receptor (CAR) T cell performance against solid tumors in mouse models and clinical trials is often less effective than predicted by CAR construct selection in two-dimensional (2D) cocultures. Three-dimensional (3D) solid tumor architecture is likely to be crucial for CAR T cell efficacy. We used a three-dimensional (3D) bioprinting approach for large-scale generation of highly reproducible 3D human tumor models for the test case, neuroblastoma, and compared these to 2D cocultures for evaluation of CAR T cells targeting the L1 cell adhesion molecule, L1CAM. CAR T cells infiltrated the model, and both CAR T and tumor cells were viable for long-term experiments and could be isolated as single-cell suspensions for whole-cell assays quantifying CAR T cell activation, effector function and tumor cell cytotoxicity. L1CAM-specific CAR T cell activation by neuroblastoma cells was stronger in the 3D model than in 2D cocultures, but neuroblastoma cell lysis was lower. The bioprinted 3D neuroblastoma model is highly reproducible and allows detection and quantification of CAR T cell tumor infiltration, representing a superior in vitro analysis tool for preclinical CAR T cell characterization likely to better select CAR T cells for in vivo performance than 2D cocultures.


Assuntos
Bioimpressão , Imunoterapia Adotiva , Neuroblastoma/terapia , Impressão Tridimensional , Receptores de Antígenos Quiméricos/genética , Linfócitos T/transplante , Linhagem Celular Tumoral , Técnicas de Cocultura , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/patologia , Linfócitos T/imunologia , Fatores de Tempo
12.
J Cancer Surviv ; 15(2): 259-272, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32844376

RESUMO

PURPOSE: An increasing number of childhood cancer survivors are using assisted reproductive technologies (ART) to overcome treatment-related fertility impairment. We report perinatal and health outcomes of offspring born to survivors following ART. METHODS: The FeCt Multicenter Offspring Study surveyed the health of offspring of childhood cancer survivors. Health outcomes in offspring born to survivors following ART (n = 57, 4.6%) or after spontaneous conception (n = 1182) were assessed in the German cohort (n = 1239) using bivariate analysis. Findings were put into the context of the general German population by health outcome assessment in 1:1 matched-pair analysis (n = 2478). RESULTS: Nearly twice the survivors used ART compared with numbers reported for the German general population (4.6% vs. 2.6%). Successful pregnancies were achieved after a median of two cycles, mainly using non-cryopreserved oocytes/sperm. Multiple sibling births (p < 0.001, 28.1% vs. 3.0%) and low birth weight (p = 0.008; OR = 2.659, 95% CI = 1.258-5.621) occurred significantly more often in offspring born to survivors who utilized ART than spontaneously conceived children, whereas similar percentages were born preterm or too small for their gestational age. ART did not increase the prevalence of childhood cancer or congenital malformations in offspring born to survivors. CONCLUSION: ART use by childhood cancer survivors was successful with both fresh and cryopreserved oocytes/sperm, and did not influence perinatal health or health outcomes when known confounders were taken into account. IMPLICATIONS FOR CANCER SURVIVORS: Oncofertility is an important component of patient care. Our study implicates that the utilization of ART by adult survivors of childhood cancer does not put offspring at additional risk for adverse perinatal or health outcomes.


Assuntos
Neoplasias , Nascimento Prematuro , Criança , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Neoplasias/epidemiologia , Avaliação de Resultados em Cuidados de Saúde , Gravidez , Resultado da Gravidez/epidemiologia , Técnicas de Reprodução Assistida , Sobreviventes
13.
Int J Cancer ; 148(5): 1219-1232, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284994

RESUMO

Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing 13 C-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma.


Assuntos
Amplificação de Genes , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Glicina/metabolismo , Humanos , Camundongos , Neuroblastoma/genética , Serina/metabolismo
14.
J Mol Diagn ; 22(11): 1309-1323, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858250

RESUMO

The detection and characterization of cell-free DNA (cfDNA) in peripheral blood from neuroblastoma patients may serve as a minimally invasive approach to liquid biopsy. Major challenges in the analysis of cfDNA purified from blood samples are small sample volumes and low cfDNA concentrations. Droplet digital PCR (ddPCR) is a technology suitable for analyzing low levels of cfDNA. Reported here are two quadruplexed ddPCR assay protocols that reliably quantify MYCN and ALK copy numbers in a single reaction together with the two reference genes, NAGK and AFF3, and accurately estimate ALKF1174L (exon 23 position 3522, C>A) and ALKR1275Q (exon 25 position 3824, G>A) mutant allele fractions using cfDNA as input. The separation of positive and negative droplets was optimized for detecting two targets in each ddPCR fluorescence channel by the adjustment of the probe and primer concentrations of each target molecule. The quadruplexed assays were validated using a panel of 10 neuroblastoma cell lines and paired blood plasma and primary neuroblastoma samples from nine patients. Accuracy and sensitivity thresholds in quadruplexed assays corresponded well with those from the respective duplexed assays. Presented are two robust quadruplexed ddPCR protocols applicable in the routine clinical setting and that require only minimal plasma volumes for the assessment of MYCN and ALK oncogene status.


Assuntos
Ácidos Nucleicos Livres/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação , Neuroblastoma/sangue , Neuroblastoma/genética , Alelos , Quinase do Linfoma Anaplásico/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Confiabilidade dos Dados , Éxons , Humanos , Biópsia Líquida/métodos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Cancers (Basel) ; 12(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668722

RESUMO

Only half of patients with relapsed B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) currently survive with standard treatment protocols. Predicting individual patient responses to defined drugs prior to application would help therapy stratification and could improve survival. With the purpose to aid personalized targeted treatment approaches, we developed a human-zebrafish xenograft (ALL-ZeFiX) assay to predict drug response in a patient in 5 days. Leukemia blast cells were pericardially engrafted into transiently immunosuppressed Danio rerio embryos, and engrafted embryos treated for the test case, venetoclax, before single-cell dissolution for quantitative whole blast cell analysis. Bone marrow blasts from patients with newly diagnosed or relapsed BCP-ALL were successfully expanded in 60% of transplants in immunosuppressed zebrafish embryos. The response of BCP-ALL cell lines to venetoclax in ALL-ZeFiX assays mirrored responses in 2D cultures. Venetoclax produced varied responses in patient-derived BCP-ALL grafts, including two results mirroring treatment responses in two refractory BCP-ALL patients treated with venetoclax. Here we demonstrate proof-of-concept for our 5-day ALL-ZeFiX assay with primary patient blasts and the test case, venetoclax, which after expanded testing for further targeted drugs could support personalized treatment decisions within the clinical time window for decision-making.

16.
Eur J Pediatr ; 179(9): 1497-1498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32447561

RESUMO

In the original version of this article, a reader pointed out that there was a mistake in the phrasing in a paragraph. This could potentially be harmful to children. The authors agree to change the wording. "vitreous fluid" will be changed to "aqueous humor".

17.
Mol Carcinog ; 59(7): 724-735, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333465

RESUMO

The immunosuppressive microenvironment in solid tumors is thought to form a barrier to the entry and efficacy of cell-based therapies such as chimeric antigen receptor (CAR) T cells. Combining CAR T cell therapy with checkpoint inhibitors has been demonstrated to oppose immune escape mechanisms in solid tumors and augment antitumor efficacy. We evaluated PD-1/PD-L1 signaling capacity and the impact of an inhibitor of this checkpoint axis in an in vitro system for cancer cell challenge, the coculture of L1CAM-specific CAR T cells with neuroblastoma cell lines. Fluorescence-activated cell sorting-based analyses and luciferase reporter assays were used to assess PD-1/PD-L1 expression on CAR T and tumor cells as well as CAR T cell ability to kill neuroblastoma cells. Coculturing neuroblastoma cell lines with L1CAM-CAR T cells upregulated PD-L1 expression on neuroblastoma cells, confirming adaptive immune resistance. Exposure to neuroblastoma cells also upregulated the expression of the PD-1/PD-L1 axis in CAR T cells. The checkpoint inhibitor, nivolumab, enhanced L1CAM-CAR T cell-directed killing. However, nivolumab-enhanced L1CAM-CAR T cell killing did not strictly correlate with PD-L1 expression on neuroblastoma cells. In fact, checkpoint inhibitor success relied on strong PD-1/PD-L1 axis expression in the CAR T cells, which in turn depended on costimulatory domains within the CAR construct, and more importantly, on the subset of T cells selected for CAR T cell generation. Thus, T cell subset selection for CAR T cell generation and CAR T cell prescreening for PD-1/PD-L1 expression could help determine when combination therapy with checkpoint inhibitors could improve treatment efficacy.


Assuntos
Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/fisiologia
18.
Blood ; 135(12): 921-933, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31971569

RESUMO

Activating mutations in cytosolic 5'-nucleotidase II (NT5C2) are considered to drive relapse formation in acute lymphoblastic leukemia (ALL) by conferring purine analog resistance. To examine the clinical effects of NT5C2 mutations in relapsed ALL, we analyzed NT5C2 in 455 relapsed B-cell precursor ALL patients treated within the ALL-REZ BFM 2002 relapse trial using sequencing and sensitive allele-specific real-time polymerase chain reaction. We detected 110 NT5C2 mutations in 75 (16.5%) of 455 B-cell precursor ALL relapses. Two-thirds of relapses harbored subclonal mutations and only one-third harbored clonal mutations. Event-free survival after relapse was inferior in patients with relapses with clonal and subclonal NT5C2 mutations compared with those without (19% and 25% vs 53%, P < .001). However, subclonal, but not clonal, NT5C2 mutations were associated with reduced event-free survival in multivariable analysis (hazard ratio, 1.89; 95% confidence interval, 1.28-2.69; P = .001) and with an increased rate of nonresponse to relapse treatment (subclonal 32%, clonal 12%, wild type 9%, P < .001). Nevertheless, 27 (82%) of 33 subclonal NT5C2 mutations became undetectable at the time of nonresponse or second relapse, and in 10 (71%) of 14 patients subclonal NT5C2 mutations were undetectable already after relapse induction treatment. These results show that subclonal NT5C2 mutations define relapses associated with high risk of treatment failure in patients and at the same time emphasize that their role in outcome is complex and goes beyond mutant NT5C2 acting as a targetable driver during relapse progression. Sensitive, prospective identification of NT5C2 mutations is warranted to improve the understanding and treatment of this aggressive ALL relapse subtype.


Assuntos
5'-Nucleotidase/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Adolescente , Alelos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Recidiva , Adulto Jovem
19.
Eur J Pediatr ; 179(2): 191-202, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897843

RESUMO

Cell-free DNA profiling using patient blood is emerging as a non-invasive complementary technique for cancer genomic characterization. Since these liquid biopsies will soon be integrated into clinical trial protocols for pediatric cancer treatment, clinicians should be informed about potential applications and advantages but also weaknesses and potential pitfalls. Small retrospective studies comparing genetic alterations detected in liquid biopsies with tumor biopsies for pediatric solid tumor types are encouraging. Molecular detection of tumor markers in cell-free DNA could be used for earlier therapy response monitoring and residual disease detection as well as enabling detection of pathognomonic and therapeutically relevant genomic alterations.Conclusion: Existing analyses of liquid biopsies from children with solid tumors increasingly suggest a potential relevance for molecular diagnostics, prognostic assessment, and therapeutic decision-making. Gaps remain in the types of tumors studied and value of detection methods applied. Here we review the current stand of liquid biopsy studies for pediatric solid tumors with a dedicated focus on cell-free DNA analysis. There is legitimate hope that integrating fully validated liquid biopsy-based innovations into the standard of care will advance patient monitoring and personalized treatment of children battling solid cancers.What is Known:• Liquid biopsies are finding their way into routine oncological screening, diagnosis, and disease monitoring in adult cancer types fast.• The most widely adopted source for liquid biopsies is blood although other easily accessible body fluids, such as saliva, pleural effusions, urine, or cerebrospinal fluid (CSF) can also serve as sources for liquid biopsiesWhat is New:• Retrospective proof-of-concept studies in small cohorts illustrate that liquid biopsies in pediatric solid tumors yield tremendous potential to be used in diagnostics, for therapy response monitoring and in residual disease detection.• Liquid biopsy diagnostics could tackle some long-standing issues in the pediatric oncology field; they can enable accurate genetic diagnostics in previously unbiopsied tumor types like renal tumors or brain stem tumors leading to better treatment strategies.


Assuntos
Biópsia Líquida/métodos , Oncologia/métodos , Neoplasias/patologia , Neoplasias/terapia , Neuroblastoma/patologia , Tumor de Wilms/patologia , Criança , Feminino , Previsões , Humanos , Masculino , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Neoplasias/genética , Neoplasias/mortalidade , Neuroblastoma/genética , Neuroblastoma/mortalidade , Pediatria/métodos , Análise de Sobrevida , Tumor de Wilms/genética , Tumor de Wilms/mortalidade
20.
J Clin Oncol ; 37(36): 3493-3506, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31644328

RESUMO

PURPOSE: Minimal residual disease (MRD) helps to accurately assess when children with late bone marrow relapses of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) will benefit from allogeneic hematopoietic stem-cell transplantation (allo-HSCT). More detailed dissection of MRD response heterogeneity and the specific genetic aberrations could improve current practice. PATIENTS AND METHODS: MRD was assessed after induction treatment and at different times during relapse treatment until allo-HSCT (indicated in poor responders to induction; MRD ≥ 10-3) for patients being treated for late BCP-ALL bone marrow relapses (n = 413; median follow-up, 9.4 years) in the ALL-REZ BFM 2002 trial/registry (ClinicalTrials.gov identifier: NCT00114348). RESULTS: Patients with both good (MRD < 10-3) and poor responses to induction treatment reached excellent event-free survival (EFS; 72% v 65%) and overall survival (OS; 82% v 74%). Patients with MRD of 10-2 or greater after induction had reduced EFS (56%), and their MRD persisted until allo-HSCT more frequently than it did in patients with MRD of 10-3 or greater to less than 10-2 (P = .037). Patients with 25% or more leukemic blasts after induction (early nonresponders) had the poorest prognosis (EFS, 22%). Interestingly, patients with MRD of 10-3 or greater before allo-HSCT (late nonresponders) still had an EFS of 50% and OS of 63%, which in principle justifies allo-HSCT in these patients. From a panel of selected candidate genes, TP53 alterations (frequency, 8%) were the only genetic alteration with independent prognostic value in any MRD-based response subgroup. CONCLUSION: After induction treatment, MRD-based treatment stratification resulted in excellent survival in patients with late relapsed BCP-ALL. Prognosis could be further improved in very poor responders by intensifying treatment directly after induction. TP53 alterations can be defined as a novel genetic high-risk marker in all MRD response groups in late relapsed BCP-ALL. Here we identified early and late nonresponders to be considered as events in future trials.


Assuntos
Neoplasia Residual/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Adolescente , Antineoplásicos/uso terapêutico , Criança , Intervalo Livre de Doença , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasia Residual/genética , Seleção de Pacientes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...