Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Islets ; 16(1): 2361996, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38833523

RESUMO

Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic ß-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 µg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat ß-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.


Assuntos
Hidrocarbonetos Clorados , Células Secretoras de Insulina , Compostos Policíclicos , Animais , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Humanos , Camundongos , Masculino , Compostos Policíclicos/farmacologia , Hidrocarbonetos Clorados/toxicidade , Ratos , Insulina/metabolismo , Retardadores de Chama/toxicidade , Secreção de Insulina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Cultivadas
2.
Chem Biol Interact ; 394: 110952, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570061

RESUMO

High throughput transcriptomics (HTTr) profiling has the potential to rapidly and comprehensively identify molecular targets of environmental chemicals that can be linked to adverse outcomes. We describe here the construction and characterization of a 50-gene expression biomarker designed to identify estrogen receptor (ER) active chemicals in HTTr datasets. Using microarray comparisons, the genes in the biomarker were identified as those that exhibited consistent directional changes when ER was activated (4 ER agonists; 4 ESR1 gene constitutively active mutants) and opposite directional changes when ER was suppressed (4 antagonist treatments; 4 ESR1 knockdown experiments). The biomarker was evaluated as a predictive tool using the Running Fisher algorithm by comparison to annotated gene expression microarray datasets including those evaluating the transcriptional effects of hormones and chemicals in MCF-7 cells. Depending on the reference dataset used, the biomarker had a predictive accuracy for activation of up to 96%. To demonstrate applicability for HTTr data analysis, the biomarker was used to identify ER activators in a set of 15 chemicals that are considered potential bisphenol A (BPA) alternatives examined at up to 10 concentrations in MCF-7 cells and analyzed by full-genome TempO-Seq. Using benchmark dose (BMD) modeling, the biomarker genes stratified the ER potency of BPA alternatives consistent with previous studies. These results demonstrate that the ER biomarker can be used to accurately identify ER activators in transcript profile data derived from MCF-7 cells.


Assuntos
Compostos Benzidrílicos , Fenóis , Receptores de Estrogênio , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Compostos Benzidrílicos/toxicidade , Fenóis/farmacologia , Fenóis/toxicidade , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Biomarcadores/metabolismo , Moduladores de Receptor Estrogênico/farmacologia
3.
Environ Sci Technol ; 58(14): 6128-6137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530926

RESUMO

High-throughput transcriptomics (HTTr) is increasingly applied to zebrafish embryos to survey the toxicological effects of environmental chemicals. Before the adoption of this approach in regulatory testing, it is essential to characterize background noise in order to guide experimental designs. We thus empirically quantified the HTTr false discovery rate (FDR) across different embryo pool sizes, sample sizes, and concentration groups for toxicology studies. We exposed zebrafish embryos to 0.1% dimethyl sulfoxide (DMSO) for 5 days. Pools of 1, 5, 10, and 20 embryos were created (n = 24 samples for each pool size). Samples were sequenced on the TempO-Seq platform and then randomly assigned to mock treatment groups before differentially expressed gene (DEG), pathway, and benchmark concentration (BMC) analyses. Given that all samples were treated with DMSO, any significant DEGs, pathways, or BMCs are false positives. As expected, we found decreasing FDRs for DEG and pathway analyses with increasing pool and sample sizes. Similarly, FDRs for BMC analyses decreased with increasing pool size and concentration groups, with more stringent BMC premodel filtering reducing BMC FDRs. Our study provides foundational data for determining appropriate experiment designs for regulatory toxicity testing with HTTr in zebrafish embryos.


Assuntos
Dimetil Sulfóxido , Peixe-Zebra , Animais , Peixe-Zebra/genética , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/toxicidade , Benchmarking , Perfilação da Expressão Gênica , Transcriptoma , Embrião não Mamífero/metabolismo
4.
Int J Obes (Lond) ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388800

RESUMO

BACKGROUND/OBJECTIVES: Obesity and its associated metabolic diseases are increasing globally. Sedentary lifestyle, high caloric diet, and genetic predisposition are known to contribute to the onset of obesity. It is increasingly recognized that exposure to environmental chemicals such as Bisphenol A (BPA) may also play a significant role. BPA has been correlated with an array of adverse health effects, including obesity and metabolic disorders. Due to public concern, manufacturers are replacing BPA with structural analogues for which there is limited toxicological data. The objective of this study was to assess the effects of these BPA analogues on adipogenesis. METHODS: The adipogenic effects of Tetra Methyl Bisphenol F (TMBPF), Bisphenol F (BPF), Bisphenol AP (BPAP), and fluorine-9-bisphenol (BHPF) were evaluated in murine 3T3-L1 cells. The cells were treated with BPA and its analogues at concentrations from 0.01 µM to 20 µM, throughout differentiation, in the absence of Dexamethasone (Dex). Lipid accumulation, mRNA and protein levels of adipogenic markers was assessed. RESULTS: We found that TMBPF, BPF and BPA increased 3T3-L1 lipid accumulation and the expression levels of adipogenic markers lipoprotein lipase (Lpl), fatty acid binding protein 4 (Fabp4) and perilipin (Plin) (1-20 µM; p < 0.05), whereas BHPF and BPAP had no effect in this model. Further, TMBPF induced adipogenesis to a greater extent than all the other chemicals including BPA (1-20 µM; p < 0.05). The effect mediated by TMBPF on expression levels of Fabp4, but not Plin, is likely mediated via peroxisome proliferator-activated receptor (PPAR) γ activation. CONCLUSIONS: Of the BPA analogues tested, BPF was most similar to BPA in its effects, while TMBPF was most adipogenic. In addition, TMBPF is likely a PPARγ agonist, it is likely an obesogenic chemical and may be a metabolic disruptor.

5.
Front Toxicol ; 5: 1194895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288009

RESUMO

The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.

6.
Toxicol Sci ; 194(1): 38-52, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37195416

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a wide range of chemicals that are used in a variety of consumer and industrial products leading to direct human exposure. Many PFAS are chemically nonreactive and persistent in the environment, resulting in additional exposure from water, soil, and dietary intake. While some PFAS have documented negative health effects, data on simultaneous exposures to multiple PFAS (PFAS mixtures) are inadequate for making informed decisions for risk assessment. The current study leverages data from previous work in our group using Templated Oligo-Sequencing (TempO-Seq) for high-throughput transcriptomic analysis of PFAS-exposed primary human liver cell spheroids; herein, we determine the transcriptomic potency of PFAS in mixtures. Gene expression data from single PFAS and mixture exposures of liver cell spheroids were subject to benchmark concentration (BMC) analysis. We used the 25th lowest gene BMC as the point of departure to compare the potencies of single PFAS to PFAS mixtures of varying complexity and composition. Specifically, the empirical potency of 8 PFAS mixtures were compared to predicted mixture potencies calculated using the principal of concentration addition (ie, dose addition) in which mixture component potencies are summed by proportion to predict mixture potency. In this study, for most mixtures, empirical mixture potencies were comparable to potencies calculated through concentration addition. This work supports that the effects of PFAS mixtures on gene expression largely follow the concentration addition predicted response and suggests that effects of these individual PFAS in mixtures are not strongly synergistic or antagonistic.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Transcriptoma , Fluorocarbonos/toxicidade , Fígado , Hepatócitos , Ingestão de Alimentos
7.
Am J Clin Nutr ; 118(1): 329-337, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230178

RESUMO

On September 7 and 8, 2022, Healthy Environment and Endocrine Disruptors Strategies, an Environmental Health Sciences program, convened a scientific workshop of relevant stakeholders involved in obesity, toxicology, or obesogen research to review the state of the science regarding the role of obesogenic chemicals that might be contributing to the obesity pandemic. The workshop's objectives were to examine the evidence supporting the hypothesis that obesogens contribute to the etiology of human obesity; to discuss opportunities for improved understanding, acceptance, and dissemination of obesogens as contributors to the obesity pandemic; and to consider the need for future research and potential mitigation strategies. This report details the discussions, key areas of agreement, and future opportunities to prevent obesity. The attendees agreed that environmental obesogens are real, significant, and a contributor at some degree to weight gain at the individual level and to the global obesity and metabolic disease pandemic at a societal level; moreover, it is at least, in theory, remediable.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Disruptores Endócrinos/toxicidade , Obesidade/epidemiologia , Obesidade/etiologia , Obesidade/metabolismo , Aumento de Peso , Pandemias
8.
Toxicol Sci ; 191(2): 266-275, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36534918

RESUMO

Since initial regulatory action in 2010 in Canada, bisphenol A (BPA) has been progressively replaced by structurally related alternative chemicals. Unfortunately, many of these chemicals are data-poor, limiting toxicological risk assessment. We used high-throughput transcriptomics to evaluate potential hazards and compare potencies of BPA and 15 BPA alternative chemicals in cultured breast cancer cells. MCF-7 cells were exposed to BPA and 15 alternative chemicals (0.0005-100 µM) for 48 h. TempO-Seq (BioSpyder Inc) was used to examine global transcriptomic changes and estrogen receptor alpha (ERα)-associated transcriptional changes. Benchmark concentration (BMC) analysis was conducted to identify 2 global transcriptomic points of departure: (1) the lowest pathway median gene BMC and (2) the 25th lowest rank-ordered gene BMC. ERα activation was evaluated using a published transcriptomic biomarker and an ERα-specific transcriptomic point of departure was derived. Genes fitting BMC models were subjected to upstream regulator and canonical pathway analysis in Ingenuity Pathway Analysis. Biomarker analysis identified BPA and 8 alternative chemicals as ERα active. Global and ERα transcriptomic points of departure produced highly similar potency rankings with bisphenol AF as the most potent chemical tested, followed by BPA and bisphenol C. Further, BPA and transcriptionally active alternative chemicals enriched similar gene sets associated with increased cell division and cancer-related processes. These data provide support for future read-across applications of transcriptomic profiling for risk assessment of data-poor chemicals and suggest that several BPA alternative chemicals may cause hazards at similar concentrations to BPA.


Assuntos
Compostos Benzidrílicos , Receptor alfa de Estrogênio , Transcriptoma , Humanos , Compostos Benzidrílicos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Estrona , Perfilação da Expressão Gênica , Células MCF-7 , Estrogênios/efeitos adversos , Estrogênios/farmacologia
9.
Sci Total Environ ; 827: 153900, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35218824

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) are ubiquitous and may persist in human tissue for several years. Only a small proportion of PFAS have been studied for human health effects. We tested the association between human blood levels of six PFAS and several clinical measures of organ and metabolic function in a nationally representative sample of 6768 participants aged 3-79 years old who participated in the Canadian Health Measures Survey. Cross-sectional associations were assessed by generalized linear mixed models incorporating survey-specific sampling weights. An increase in perfluorooctanoic acid (PFOA) equivalent to the magnitude of its geometric mean (GM) of 2.0 µg/L was associated with percentage (95% CI) increases in serum enzymes reflecting liver function: aspartate aminotransferase (AST) 3.7 (1.1, 6.4), gamma-glutamyl transferase (GGT) 11.8 (2.5, 21.8), alanine aminotransferase (ALT) 3.2 (0.5, 5.9), and bilirubin 3.6 (2.7, 4.5). A GM increase in perfluorodecanoic acid (PFDA) of 0.2 µg/L was positively associated with percentage increases in GGT, triglycerides, low-density lipoprotein (LDL) cholesterol, total cholesterol, and calcium with respective increases of 15.5 (2.2, 30.4), 7.0 (1.0, 13.2), 10.7 (5.5, 16.1), 2.8 (0.2, 5.3), and 0.8 (0.3, 1.3). PFOA, perfluorooctane sulfonate (PFOS), PFDA and perfluorononanoic acid (PFNA) were positively associated with GGT. All six congeners were positively associated with at least one biomarker of lipid metabolism, and 5 of 6, PFOA, PFOS, PFDA, perfluorohexane sulfonate (PFHxS) and PFNA were positively associated with serum calcium. Exposure to selected PFAS is associated with clinical blood tests reflecting metabolism and the function of several organ systems. These relatively small changes may possibly indicate early pathology that is clinically inapparent and may possibly be of significance in a general population or in individuals exposed to very high levels of PFAS.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Idoso , Cálcio , Canadá , Criança , Pré-Escolar , Colesterol , Estudos Transversais , Fluorocarbonos/análise , Humanos , Pessoa de Meia-Idade , Adulto Jovem
10.
Toxicology ; 461: 152900, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34411659

RESUMO

The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30-70 % for pre-adipocyte proliferation; this was 40-80 % for triglyceride accumulation induced by pyraclostrobin, 80-100 % for tributyltin, and 80-100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30-70 % active determinations for pyraclostrobin, 30-50 % for tributyltin, and 20-40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.


Assuntos
Adipogenia/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Estrobilurinas/toxicidade , Compostos de Trialquitina/toxicidade , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Reprodutibilidade dos Testes , Rosiglitazona/farmacologia , Triglicerídeos/metabolismo
11.
Toxicol Sci ; 184(1): 154-169, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453843

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this study was to compare the potencies (ie, benchmark concentrations: BMCs) of PFAS in primary human liver microtissues (3D spheroids) using high-throughput transcriptional profiling. Gene expression changes were measured using TempO-seq, a templated, multiplexed RNA-sequencing platform. Spheroids were exposed for 1 or 10 days to increasing concentrations of 23 PFAS in 3 subgroups: carboxylates (PFCAs), sulfonates (PFSAs), and fluorotelomers and sulfonamides. PFCAs and PFSAs exhibited trends toward increased transcriptional potency with carbon chain-length. Specifically, longer-chain compounds (7-10 carbons) were more likely to induce changes in gene expression and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses support the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the possible health effects of PFAS and will be used to inform read-across for human health risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Ácidos Carboxílicos , Fluorocarbonos/toxicidade , Humanos , Fígado , Transcriptoma
12.
Toxicol Sci ; 181(2): 199-214, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772556

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) are widely found in the environment because of their extensive use and persistence. Although several PFAS are well studied, most lack toxicity data to inform human health hazard and risk assessment. This study focused on 4 model PFAS: perfluorooctanoic acid (PFOA; 8 carbon), perfluorobutane sulfonate (PFBS; 4 carbon), perfluorooctane sulfonate (PFOS; 8 carbon), and perfluorodecane sulfonate (PFDS; 10 carbon). Human primary liver cell spheroids (pooled from 10 donors) were exposed to 10 concentrations of each PFAS and analyzed at 4 time points. The approach aimed to: (1) identify gene expression changes mediated by the PFAS, (2) identify similarities in biological responses, (3) compare PFAS potency through benchmark concentration analysis, and (4) derive bioactivity exposure ratios (ratio of the concentration at which biological responses occur, relative to daily human exposure). All PFAS induced transcriptional changes in cholesterol biosynthesis and lipid metabolism pathways, and predicted PPARα activation. PFOS exhibited the most transcriptional activity and had a highly similar gene expression profile to PFDS. PFBS induced the least transcriptional changes and the highest benchmark concentration (ie, was the least potent). The data indicate that these PFAS may have common molecular targets and toxicities, but that PFOS and PFDS are the most similar. The transcriptomic bioactivity exposure ratios derived here for PFOA and PFOS were comparable to those derived using rodent apical endpoints in risk assessments. These data provide a baseline level of toxicity for comparison with other known PFAS using this testing strategy.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Hepatócitos , Humanos , Transcriptoma
13.
Toxicol In Vitro ; 72: 105097, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33476716

RESUMO

Bisphenol A (BPA) is a chemical used in the manufacturing of plastics to which human exposure is ubiquitous. Numerous studies have linked BPA exposure to many adverse health outcomes prompting the replacement of BPA with various analogues including bisphenol-F (BPF) and bisphenol S (BPS). Other bisphenols are used in various consumer applications, such as 3,3',5,5'-Tetrabromobisphenol A (TBBPA), which is used as a flame retardant. Few studies to date have examined the effects of BPA and its analogues in stem cells to explore potential developmental impacts. Here we used transcriptomics to investigate similarities and differences of BPA and three of its analogues in the estrogen receptor negative, human embryonic stem cell line H9 (WA09). H9 cells were exposed to increasing concentrations of the bisphenols and analyzed using RNA-sequencing. Our data indicate that BPA, BPF, and BPS have similar potencies in inducing transcriptional changes and perturb many of the same pathways. TBBPA, the least structurally similar bisphenol of the group, exhibited much lower potency. All bisphenols robustly impacted gene expression in these cells, albeit at concentrations well above those observed in estrogen-positive cells. Overall, we provide a foundational data set against which to explore the transcriptional similarities of other bisphenols in embryonic stem cells, which may be used to assess the suitability of chemical grouping for read-across and for preliminary potency evaluation.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Fenóis/toxicidade , Bifenil Polibromatos/toxicidade , Sulfonas/toxicidade , Transcriptoma/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , RNA-Seq , Medição de Risco
14.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086721

RESUMO

Sustained HER2/HER3 signaling due to the overproduction of the HER3 ligand heregulin (HRG) is proposed as a key contributor to endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The molecular mechanisms linking HER2 transactivation by HRG-bound HER3 to the acquisition of a hormone-independent phenotype in ER+ breast cancer is, however, largely unknown. Here, we explored the possibility that autocrine HRG signaling drives cytokine-related endocrine resistance in ER+ breast cancer cells. We used human cytokine antibody arrays to semi-quantitatively measure the expression level of 60 cytokines and growth factors in the extracellular milieu of MCF-7 cells engineered to overexpress full-length HRGß2 (MCF-7/HRG cells). Interleukin-8 (IL-8), a chemokine closely linked to ER inaction, emerged as one the most differentially expressed cytokines. Cytokine profiling using structural deletion mutants lacking both the N-terminus and the cytoplasmic-transmembrane region of HRGß2-which is not secreted and cannot transactivate HER2-or lacking a nuclear localization signal at the N-terminus-which cannot localize at the nucleus but is actively secreted and transactivates HER2-revealed that the HRG-driven activation of IL-8 expression in ER+ cells required HRG secretion and transactivation of HER2 but not HRG nuclear localization. The functional blockade of IL-8 with a specific antibody inversely regulated ERα-driven transcriptional activation in endocrine-sensitive MCF-7 cells and endocrine-resistant MCF-7/HRG cells. Overall, these findings suggest that IL-8 participates in the HRG-driven endocrine resistance program in ER+/HER2- breast cancer and might illuminate a potential clinical setting for IL8- or CXCR1/2-neutralizing antibodies.


Assuntos
Neoplasias da Mama/metabolismo , Sistema Endócrino/metabolismo , Interleucina-8/metabolismo , Neuregulina-1/metabolismo , Receptores de Estrogênio/metabolismo , Comunicação Autócrina , Neoplasias da Mama/patologia , Quimiocinas/metabolismo , Feminino , Humanos , Células MCF-7 , Modelos Biológicos , Receptor ErbB-2/metabolismo , Transcrição Gênica , Regulação para Cima
15.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081219

RESUMO

HER2 transactivation by the HER3 ligand heregulin (HRG) promotes an endocrine-resistant phenotype in the estrogen receptor-positive (ER+) luminal-B subtype of breast cancer. The underlying biological mechanisms that link them are, however, incompletely understood. Here, we evaluated the putative role of the lipogenic enzyme fatty acid synthase (FASN) as a major cause of HRG-driven endocrine resistance in ER+/HER2-negative breast cancer cells. MCF-7 cells engineered to stably overexpress HRG (MCF-7/HRG), an in vitro model of tamoxifen/fulvestrant-resistant luminal B-like breast cancer, showed a pronounced up-regulation of FASN gene/FASN protein expression. Autocrine HRG up-regulated FASN expression via HER2 transactivation and downstream activation of PI-3K/AKT and MAPK-ERK1/2 signaling pathways. The HRG-driven FASN-overexpressing phenotype was fully prevented in MCF-7 cells expressing a structural deletion mutant of HRG that is sequestered in a cellular compartment and lacks the ability to promote endocrine-resistance in an autocrine manner. Pharmacological inhibition of FASN activity blocked the estradiol-independent and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow in soft-agar. In vivo treatment with a FASN inhibitor restored the anti-tumor activity of tamoxifen and fulvestrant against fast-growing, hormone-resistant MCF-7/HRG xenograft tumors in mice. Overall, these findings implicate FASN as a key enabler for endocrine resistance in HRG+/HER2- breast cancer and highlight the therapeutic potential of FASN inhibitors for the treatment of endocrine therapy-resistant luminal-B breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas/metabolismo , Animais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ácido Graxo Sintase Tipo I/genética , Feminino , Fulvestranto/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Tamoxifeno/uso terapêutico
16.
Environ Health Perspect ; 128(10): 107002, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33026256

RESUMO

BACKGROUND: Exposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested PCB126 alters muscle mitochondrial function through an indirect mechanism. Given that PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism. OBJECTIVES: We determined a) the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion in vitro; b) whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; and c) whether preestablished insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes. METHODS: 3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions [insulin sensitive (IS) and insulin resistant (IR) adipocytes], followed by the measurement of secreted adipokines, mitochondrial function, and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 myotubes or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes. RESULTS: IR 3T3-L1 adipocytes treated with PCB126 had significantly higher adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and lower mitochondrial function, glucose uptake, and glycolysis. However, PCB126 did not significantly alter these parameters in IS adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to lower phosphorylation of AMP-activated protein kinase (p-AMPK) and higher superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Myotubes exposed to the CM from PCB126-treated IR adipocytes had lower glucose uptake, with no alteration in glycolysis or mitochondrial function. Interestingly, p-AMPK levels were higher in myotubes exposed to the CM of PCB126-treated IR adipocytes. DISCUSSION: Taken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 might explain impaired glucose uptake in myotubes. https://doi.org/10.1289/EHP7058.


Assuntos
Tecido Adiposo/fisiologia , Substâncias Perigosas/toxicidade , Músculos/fisiologia , Bifenilos Policlorados/toxicidade , Células 3T3-L1 , Adipócitos , Adiponectina , Animais , Comunicação , Metabolismo Energético , Insulina , Resistência à Insulina , Camundongos , Mitocôndrias , Fibras Musculares Esqueléticas , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade/métodos
17.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556108

RESUMO

The prevalence of type 2 diabetes (T2D) continues to increase worldwide. It is well established that genetic susceptibility, obesity, overnutrition and a sedentary life style are risk factors for the development of T2D. However, more recently, studies have also proposed links between exposure to endocrine-disrupting chemicals (EDCs) and altered glucose metabolism. Human exposure to environmental pollutants that are suspected to have endocrine disruptor activity is ubiquitous. One such chemical is Dechlorane Plus (DP), a flame retardant, that is now detected in humans and the environment. Here we show that exposure of mice to low, environmentally relevant doses of DP promoted glucose intolerance in mice fed a high-fat diet independent of weight gain. Furthermore, DP had pronounced effects on the adipose tissue, where it induced the development of hypertrophied white adipose tissue (WAT), and increased serum levels of resistin, leptin, and plasminogen activator inhibitor-1. In addition, DP exposure induced "whitening" of brown adipose tissue (BAT), and reduced BAT uncoupling protein 1 expression. Importantly, some of these effects occurred even when the mice were fed a regular, low-fat, diet. Finally, WAT adipogenic markers were reduced with DP treatment in the WAT. We also show that DP directly inhibited insulin signaling in murine adipocytes and human primary subcutaneous adipocytes in vitro. Taken together, our results show that the exposure to low and environmentally relevant levels of DP may contribute to the development of T2D.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Intolerância à Glucose/induzido quimicamente , Hidrocarbonetos Clorados/farmacologia , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Compostos Policíclicos/farmacologia , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiopatologia , Adulto , Idoso , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Gravidez
18.
Endocrinology ; 161(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32170302

RESUMO

Exposure to endocrine-disrupting chemicals (EDCs) is associated with adverse health outcomes including obesity and diabetes. Obesity, and more specifically visceral obesity, is correlated with metabolic disease. The adipose tissue is an endocrine organ and a potential target for many environmental pollutants including bisphenols. The subcutaneous (Sc) and the omental (Om, visceral) depots are composed of mature adipocytes and residing progenitors, which may be different between the depots and may be EDCs targets. Bisphenol A (BPA) is a suspected metabolic disruptor, and is being replaced with structurally similar compounds such as bisphenol S (BPS). Like BPA, BPS induces adipogenesis in murine and primary human Sc preadipocytes. However, the effect of BPS on Om preadipocytes is not known. In this study, we show that human primary progenitors from Om depots have a distinct transcriptomic signature as compared to progenitors derived from donor-matched Sc depots. Furthermore, we show that BPS increases adipogenesis both of Om and Sc preadipocytes and can mimic the action of glucocorticoids or peroxisome proliferator-activated receptor γ (PPARγ) agonists. We also show that BPS treatment, at 0.1 µM and 25 µM, modifies the adipokine profiles both of Om- and Sc-derived adipocytes in a depot-specific manner. Taken together our data show distinct gene expression profiles in the Om vs Sc progenitors and similar responses to the BPA analogue, BPS.


Assuntos
Adipócitos/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , PPAR gama/genética , PPAR gama/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo
19.
Sci Rep ; 9(1): 16005, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690802

RESUMO

Breast cancer is one of the most common cancers diagnosed in women worldwide. Genetic predisposition, such as breast cancer 1 (BRCA1) mutations, account for a minor percentage of the total breast cancer incidences. And thus, many life style factors have also been linked to the disease such as smoking, alcohol consumption and obesity. Emerging studies show that environmental pollutants may also play a role. Bisphenol-A (BPA) has been suspected to contribute to breast cancer development, and has been shown to affect mammary gland development amongst other effects. This prompted its replacement with other bisphenol analogs such as, bisphenol-S (BPS). In this study we used the human mammary epithelial cells, MCF-12A, grown in extracellular matrix to investigate the ability of BPA and BPS to disrupt mammary epithelial cells organization. We show that both BPA and BPS were equipotent in disrupting the organization of the acinar structures, despite BPS being less oestrogenic by other assays. Further, treatment with both compounds enabled the cells to invade the lumen of the structures. This study shows that BPS and BPA are environmental pollutants that may affect mammary development and may contribute to the development of breast cancer.


Assuntos
Compostos Benzidrílicos/toxicidade , Mama/crescimento & desenvolvimento , Disruptores Endócrinos/toxicidade , Células Epiteliais/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Mama/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , Células Epiteliais/citologia , Feminino , Humanos , Morfogênese/efeitos dos fármacos
20.
Toxicol In Vitro ; 57: 39-47, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30738889

RESUMO

Adequate concentration of iodide ions within thyroid epithelial cells, which is mediated by the sodium iodide symporter (NIS), is essential for proper thyroid hormone synthesis. Inhibition of NIS activity represents a potential mechanism by which goitrogens/toxicants can disrupt thyroid hormone physiology. It is necessary to develop a rapid, simple, inexpensive and sensitive screening assay to identify chemicals affecting NIS function. The current study compares the sensitivities of non-radioactive Sandell-Kolthoff (SK) reaction and radioactive iodide uptake (RAIU) in a previously described NIS assay. The EPAhNIS cell line (HEK293T stably transfected to over-express the human NIS) was tested with the reference NIS inhibitor (sodium perchlorate) across multiple log concentration range. The results from SK reaction in EPAhNIS cells showed similar performance to published RAIU results from the same cell line, in terms of assay screening coefficient (Z') and variability (CV). Results from the reference chemicals tested in EPAhNIS cells revealed that SK reaction yielded IC50 and selectivity scores consistent with those observed for RAIU. However, RAIU seems marginally more sensitive than the SK reaction, as RAIU consistently detected weaker NIS inhibitors among the test chemicals. We developed a second hNIS assay based on the MCF-7 cell line. Applying reference anions and chemicals to MCF7hNIS cells, we found that in comparison with results from EPAhNIS cells, the SK reaction with MCF7hNIS: 1) yielded similar Z' and CV; 2) had similar IC50 and selectivity scores for reference chemicals; 3) identified more NIS inhibitors among reference chemicals than SK reaction, but less than the RAIU assay in EPAhNIS cells. In conclusion, the SK reaction can be used with both EPAhNIS and MCF7hNIS cells to measure iodide uptake and identify NIS inhibitors, except for those presenting an extremely weak potency.


Assuntos
Bioensaio , Simportadores/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Iodetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...