Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(1): 101146, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146448

RESUMO

Here we describe a protocol for the generation of site-specific DNA damage, including double and single strand breaks, using the 405 nm laser of a confocal microscope in cells pre-sensitized with Hoechst. This is a simple approach, particularly useful to assess the involvement of proteins and the roles of liquid-liquid phase separation in DNA damage repair. Examples of transfection protocol, drug concentrations, and microscopy are provided, although optimization may be needed for specific experimental setups and cell lines used. For complete details on the use and execution of this protocol, please refer to Levone et al. (2021).


Assuntos
Dano ao DNA , Reparo do DNA , Linhagem Celular , Dano ao DNA/genética , Lasers , Transfecção
2.
Cancers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34359655

RESUMO

Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones-each carrying a unique set of mutations-coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.

3.
Nucleic Acids Res ; 49(13): 7713-7731, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34233002

RESUMO

Liquid-liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease.


Assuntos
Proteína FUS de Ligação a RNA/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Mapeamento de Interação de Proteínas , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/isolamento & purificação
4.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33704371

RESUMO

RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid-liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.


Assuntos
Reparo do DNA/genética , Proteína FUS de Ligação a RNA/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética
5.
Haematologica ; 106(2): 474-482, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107331

RESUMO

The human fetal γ-globin gene is repressed in the adult stage through complex regulatory mechanisms involving transcription factors and epigenetic modifiers. Reversing γ-globin repression, or maintaining its expression by manipulating regulatory mechanisms, has become a major clinical goal in the treatment of ß-hemoglobinopathies. Here, we identify the orphan nuclear receptor Coup-TFII (NR2F2/ARP-1) as an embryonic/fetal stage activator of γ-globin expression. We show that Coup-TFII is expressed in early erythropoiesis of yolk sac origin, together with embryonic/fetal globins. When overexpressed in adult cells (including peripheral blood cells from human healthy donors and ß039 thalassemic patients) Coup-TFII activates the embryonic/fetal globins genes, overcoming the repression imposed by the adult erythroid environment. Conversely, the knock-out of Coup-TFII increases the ß/γ+ß globin ratio. Molecular analysis indicates that Coup-TFII binds in vivo to the ß-locus and contributes to its conformation. Overall, our data identify Coup-TFII as a specific activator of the γ-globin gene.


Assuntos
Receptores Nucleares Órfãos , gama-Globinas , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Proteínas de Transporte/genética , Humanos , Regiões Promotoras Genéticas , gama-Globinas/genética
6.
Prog Neurobiol ; 190: 101803, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335272

RESUMO

Amyotrophic lateral sclerosis (ALS) is a relentless and fatal neurological disease characterized by the selective degeneration of motor neurons. No effective therapy is available for this disease. Several lines of evidence indicate that alteration of RNA metabolism, including microRNA (miRNA) processing, is a relevant pathogenetic factor and a possible therapeutic target for ALS. Here, we showed that the abundance of components in the miRNA processing machinery is altered in a SOD1-linked cellular model, suggesting consequent dysregulation of miRNA biogenesis. Indeed, high-throughput sequencing of the small RNA fraction showed that among the altered miRNAs, miR-129-5p was increased in different models of SOD1-linked ALS and in peripheral blood cells of sporadic ALS patients. We demonstrated that miR-129-5p upregulation causes the downregulation of one of its targets: the RNA-binding protein ELAVL4/HuD. ELAVL4/HuD is predominantly expressed in neurons, where it controls several key neuronal mRNAs. Overexpression of pre-miR-129-1 inhibited neurite outgrowth and differentiation via HuD silencing in vitro, while its inhibition with an antagomir rescued the phenotype. Remarkably, we showed that administration of an antisense oligonucleotide (ASO) inhibitor of miR-129-5p to an ALS animal model, SOD1 (G93A) mice, result in a significant increase in survival and improved the neuromuscular phenotype in treated mice. These results identify miR-129-5p as a therapeutic target that is amenable to ASO modulation for the treatment of ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Regulação para Baixo , Proteína Semelhante a ELAV 4 , Humanos , Camundongos , MicroRNAs/genética , Oligonucleotídeos Antissenso/farmacologia , Superóxido Dismutase-1 , Regulação para Cima
7.
Sci Rep ; 9(1): 3388, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833651

RESUMO

SOX6 is a HMG-box transcription factor expressed in a wide range of tissues. Recent data show that SOX6 expression is altered in different cancers, in the majority of cases being downregulated. To date, no data are available about SOX6 role in hematological malignancies. Here we demonstrate that SOX6 overexpressing BCR-ABL1+ B-ALL cells are unable to promote leukemia in a mouse model. Starting from this observation, we extended our study to a panel of human leukemic cells carrying genetic lesions distinctive of different types of leukemias and myeloproliferative disorders (the BCR-ABL1 translocation and the JAK2V617F amino acid substitution) to dissect the cellular events induced by SOX6. The inhibition of proliferation is the invariant outcome of SOX6 overexpression but it is achieved via two different cellular responses: terminal differentiation in erythroid-biased cells, irrespectively of their mutation, and apoptosis in megakaryocytic-primed and lymphoid cells. Within this context, cells carrying the highest copy number of the JAK2V617F allele better counteract the SOX6-imposed growth arrest. The interrogation of the GEPIA (Gene Expression Profiling Interactive Analysis) human dataset reveals that SOX6 is downregulated in a cohort of AML patients, uncovering a wide anti-proliferative role of SOX6 in a variety of mutant backgrounds.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Janus Quinase 2/metabolismo , Leucemia/metabolismo , Fatores de Transcrição SOXD/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Fusão bcr-abl/genética , Células HEK293 , Humanos , Immunoblotting , Janus Quinase 2/genética , Leucemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXD/genética
8.
Nucleic Acids Res ; 45(2): 902-914, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27591253

RESUMO

Alternative splicing of terminal exons increases transcript and protein diversity. How physiological and pathological stimuli regulate the choice between alternative terminal exons is, however, largely unknown. Here, we show that Brahma (BRM), the ATPase subunit of the hSWI/SNF chromatin-remodeling complex interacts with BRCA1/BARD1, which ubiquitinates the 50 kDa subunit of the 3' end processing factor CstF. This results in the inhibition of transcript cleavage at the proximal poly(A) site and a shift towards inclusion of the distal terminal exon. Upon oxidative stress, BRM is depleted, cleavage inhibition is released, and inclusion of the proximal last exon is favoored. Our findings elucidate a novel regulatory mechanism, distinct from the modulation of transcription elongation by BRM that controls alternative splicing of internal exons.


Assuntos
Processamento Alternativo , Proteína BRCA1/metabolismo , Fator Estimulador de Clivagem/metabolismo , Éxons , Estresse Oxidativo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos , Estresse Oxidativo/genética , Poli A , Ligação Proteica , Fatores de Transcrição/genética , Ubiquitinação
9.
Biomolecules ; 5(4): 2363-87, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26437437

RESUMO

Posttranscriptional modifications of messenger RNAs (mRNAs) are key processes in the fine-tuning of cellular homeostasis. Two major actors in this scenario are RNA binding proteins (RBPs) and microRNAs (miRNAs) that together play important roles in the biogenesis, turnover, translation and localization of mRNAs. This review will highlight recent advances in the understanding of the role of RBPs in the regulation of the maturation and the function of miRNAs. The interplay between miRNAs and RBPs is discussed specifically in the context of neuronal development and function.


Assuntos
MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Neurônios/metabolismo
10.
Wiley Interdiscip Rev RNA ; 5(4): 565-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24687864

RESUMO

In mammalian cells in general and in neurons in particular, mRNA maturation, translation, and degradation are highly complex and dynamic processes. RNA-binding proteins (RBPs) play crucial roles in all these events. First, they participate in the choice of pre-mRNA splice sites and in the selection of the polyadenylation sites, determining which of the possible isoforms is produced from a given precursor mRNA. Then, once in the cytoplasm, the protein composition of the RNP particles determines whether the mature mRNA is transported along the dendrites or the axon of a neuron to the synapses, how efficiently it is translated, and how stable it is. In agreement with their importance for neuronal function, mutations in genes that code for RBPs are associated with various neurological diseases. In this review, we illustrate how individual RBPs determine the fate of an mRNA, and we discuss how mutations in RBPs or perturbations of the mRNA metabolism can cause neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Humanos , Doenças Neurodegenerativas/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
11.
Int J Cell Biol ; 2013: 153634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24159334

RESUMO

It is widely accepted that tumorigenesis is a multistep process characterized by the sequential accumulation of genetic alterations. However, the molecular basis of genomic instability in cancer is still partially understood. The observation that hereditary cancers are often characterized by mutations in DNA repair and checkpoint genes suggests that accumulation of DNA damage is a major contributor to the oncogenic transformation. It is therefore of great interest to identify all the cellular pathways that contribute to the response to DNA damage. Recently, RNA processing has emerged as a novel pathway that may contribute to the maintenance of genome stability. In this review, we illustrate several different mechanisms through which pre-mRNA splicing and genomic stability can influence each other. We specifically focus on the role of splicing factors in the DNA damage response and describe how, in turn, activation of the DDR can influence the activity of splicing factors.

12.
Neuromolecular Med ; 15(4): 661-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23979992

RESUMO

SUMOylation is a protein posttranslational modification that participates in the regulation of numerous biological processes within the cells. Small ubiquitin-like modifier (SUMO) proteins are members of the ubiquitin-like protein family and, similarly to ubiquitin, are covalently linked to a lysine residue on a target protein via a multi-enzymatic cascade. To assess the specific mechanism triggered by SUMOylation, the identification of SUMO protein substrates and of the precise acceptor site to which SUMO is bound is of critical relevance. Despite hundreds of mammalian proteins have been described as targets of SUMOylation, the identification of the precise acceptor sites still represents an important analytical challenge because of the relatively low stoichiometry in vivo and the highly dynamic nature of this modification. Moreover, mass spectrometry-based identification of SUMOylated sites is hampered by the large peptide remnant of SUMO proteins that are left on the modified lysine residue upon tryptic digestion. The present review provides a survey of the strategies that have been exploited in order to enrich, purify and identify SUMOylation substrates and acceptor sites in human cells on a large-scale format. The success of the presented strategies helped to unravel the numerous activities of this modification, as it was shown by the exemplary case of the RNA-binding protein family, whose SUMOylation is here reviewed.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteômica , Proteínas de Ligação a RNA/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Nucléolo Celular/metabolismo , Sequência Consenso , Cisteína Endopeptidases/metabolismo , Humanos , Mamíferos/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Degeneração Neural , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/isolamento & purificação , Especificidade por Substrato , Complexos Ubiquitina-Proteína Ligase/metabolismo
13.
PLoS One ; 8(4): e61980, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613995

RESUMO

Paraquat (PQ) is a neurotoxic herbicide that induces superoxide formation. Although it is known that its toxic properties are linked to ROS production, the cellular response to PQ is still poorly understood. We reported previously that treatment with PQ induced genome-wide changes in pre-mRNA splicing. Here, we investigated the molecular mechanism underlying PQ-induced pre-mRNA splicing alterations. We show that PQ treatment leads to the phosphorylation and nuclear accumulation of SRPK2, a member of the family of serine/arginine (SR) protein-specific kinases. Concomitantly, we observed increased phosphorylation of SR proteins. Site-specific mutagenesis identified a single serine residue that is necessary and sufficient for nuclear localization of SRPK2. Transfection of a phosphomimetic mutant modified splice site selection of the E1A minigene splicing reporter similar to PQ-treatment. Finally, we found that PQ induces DNA damage and vice versa that genotoxic treatments are also able to promote SRPK2 phosphorylation and nuclear localization. Consistent with these observations, treatment with PQ, cisplatin or γ-radiation promote changes in the splicing pattern of genes involved in DNA repair, cell cycle control, and apoptosis. Altogether, our findings reveal a novel regulatory mechanism that connects PQ to the DNA damage response and to the modulation of alternative splicing via SRPK2 phosphorylation.


Assuntos
Paraquat/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Precursores de RNA/genética , Humanos , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética
14.
Wiley Interdiscip Rev RNA ; 2(1): 79-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21956970

RESUMO

The formation of defined 3(') ends is an important step in the biogenesis of mRNAs. In eukaryotic cells, all mRNA 3(') ends are generated by endonucleolytic cleavage of primary transcripts in reactions that are essentially posttranscriptional. Nevertheless, 3(') end formation is tightly connected to transcription in vivo, and a link with mRNA export to the cytoplasm has been postulated. Here, we briefly review the current knowledge about the two types of mRNA 3(') end processing reactions, cleavage/polyadenylation and histone RNA processing. We then focus on factors shared between these two reactions. In particular, we discuss evidence for new functions of the mammalian cleavage factor I subunit CF I(m) 68 in histone RNA 3(') processing and in the export of mature mRNAs from the nucleus to the cytoplasm.


Assuntos
Mamíferos/genética , Processamento de Terminações 3' de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Animais , Histonas/genética , Humanos , Mamíferos/metabolismo , Modelos Biológicos , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
15.
Hum Mutat ; 32(2): 168-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21120952

RESUMO

Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders including Parkinson, Alzheimer, and Amyotrophic Lateral Sclerosis (ALS). In addition, aberrant mRNA splicing has been documented in neurodegeneration. To characterize the cellular response to mitochondrial perturbations at the level of gene expression and alternative pre-mRNA splicing we used splicing-sensitive microarrays to profile human neuroblastoma SH-SY5Y cells treated with paraquat, a neurotoxic herbicide that induces the formation of reactive oxygen species and causes mitochondrial damage in animal models, and SH-SY5Y cells stably expressing the mutant G93A-SOD1 protein, one of the genetic causes of ALS. In both models we identified a common set of genes whose expression and alternative splicing are deregulated. Pathway analysis of the deregulated genes revealed enrichment in genes involved in neuritogenesis, axon growth and guidance, and synaptogenesis. Alterations in transcription and pre-mRNA splicing of candidate genes were confirmed experimentally in the cell line models as well as in brain and spinal cord of transgenic mice carrying the G93A-SOD1 mutation. Our findings expand the realm of the pathways implicated in neurodegeneration and suggest that alterations of axonal function may descend directly from mitochondrial damage.


Assuntos
Processamento Alternativo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Superóxido Dismutase/metabolismo , Animais , Axônios/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neuritos/metabolismo , Doenças Neurodegenerativas/genética , Superóxido Dismutase-1
16.
Nucleic Acids Res ; 38(21): 7637-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20634199

RESUMO

Metazoan replication-dependent histone pre-mRNAs undergo a unique 3'-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and symplekin acts as the effector of RNA cleavage. Here, we report that yet another protein involved in cleavage/polyadenylation, mammalian cleavage factor I 68-kDa subunit (CF I(m)68), participates in histone RNA 3'-end processing. CF I(m)68 was found in a highly purified U7 snRNP preparation. Its interaction with the U7 snRNP depends on the N-terminus of the U7 snRNP protein Lsm11, known to be important for histone RNA processing. In vivo, both depletion and overexpression of CF I(m)68 cause significant decreases in processing efficiency. In vitro 3'-end processing is slightly stimulated by the addition of low amounts of CF I(m)68, but inhibited by high amounts or by anti-CF I(m)68 antibody. Finally, immunoprecipitation of CF I(m)68 results in a strong enrichment of histone pre-mRNAs. In contrast, the small CF I(m) subunit, CF I(m)25, does not appear to be involved in histone RNA processing.


Assuntos
Histonas/genética , Processamento de Terminações 3' de RNA , Ribonucleoproteína Nuclear Pequena U7/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Histonas/metabolismo , Humanos , Camundongos , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Fatores de Poliadenilação e Clivagem de mRNA/química
17.
Mol Biol Cell ; 20(24): 5211-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19864460

RESUMO

Export of mRNA from the nucleus is linked to proper processing and packaging into ribonucleoprotein complexes. Although several observations indicate a coupling between mRNA 3' end formation and export, it is not known how these two processes are mechanistically connected. Here, we show that a subunit of the mammalian pre-mRNA 3' end processing complex, CF I(m)68, stimulates mRNA export. CF I(m)68 shuttles between the nucleus and the cytoplasm in a transcription-dependent manner and interacts with the mRNA export receptor NXF1/TAP. Consistent with the idea that CF I(m)68 may act as a novel adaptor for NXF1/TAP, we show that CF I(m)68 promotes the export of a reporter mRNA as well as of endogenous mRNAs, whereas silencing by RNAi results in the accumulation of mRNAs in the nucleus. Moreover, CF I(m)68 associates with 80S ribosomes but not polysomes, suggesting that it is part of the mRNP that is remodeled in the cytoplasm during the initial stages of translation. These results reveal a novel function for the pre-mRNA 3' end processing factor CF I(m)68 in mRNA export.


Assuntos
Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , Transporte de RNA , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Centrifugação com Gradiente de Concentração , Células HeLa , Humanos , Carioferinas/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Transcrição Gênica , Proteína Exportina 1
18.
Microsc Res Tech ; 71(8): 564-72, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18398834

RESUMO

In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs ready to be exported to the cytoplasm. The molecular and structural apparatus for mRNA production is generally able to promptly respond to variations of metabolic demands. Hibernating mammals, which periodically enter a hypometabolic state, represent an interesting physiological model to investigate the adaptive morpho-functional modifications of the pre-mRNA transcriptional and processing machinery under extreme metabolic conditions. In this study, the subnuclear distribution of some transcriptional, splicing, and cleavage factors was investigated by ultrastructural immunocytochemistry in cell nuclei of the liver (a highly metabolizing organ involved in multiple regulatory functions) and the brown adipose tissue (responsible for nonshivering thermogenesis) from euthermic, hibernating, and arousing hazel dormice (Muscardinus avellanarius). Our observations demonstrate that, during hibernation, transcriptional activity significantly decreases and pre-mRNA processing factors undergo an intranuclear redistribution moving to domains usually devoid of such molecules; moreover, in hepatocytes, there is a preferential accumulation of pre-mRNAs at the splicing stage, whereas, in brown adipocytes, pre-mRNAs are mainly stored at the cleavage stage. Upon arousal, the pre-mRNAs at the cleavage stage are immediately utilized, while the maturation of pre-mRNAs at the splicing stage seems to be restored before transcription had taken place. Our data suggest a programmed intranuclear reorganization of the RNA maturation machinery aimed at efficiently and rapidly restoring the pre-mRNA processing, and, consequently, the specific cellular activities upon arousal. Once again natural hibernation appears as a highly programmed hypometabolic state rather than a simple fall of metabolic and physiological functions.


Assuntos
Hibernação , Myoxidae/fisiologia , Precursores de RNA/biossíntese , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Adipócitos/química , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/ultraestrutura , Animais , Hepatócitos/química , Hepatócitos/ultraestrutura , Imuno-Histoquímica , Fígado/química , Fígado/ultraestrutura , Microscopia Imunoeletrônica
19.
Mol Biol Cell ; 18(4): 1282-92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17267687

RESUMO

Mammalian cleavage factor I (CF Im) is an essential factor that is required for the first step in pre-mRNA 3' end processing. Here, we characterize CF Im68 subnuclear distribution and mobility. Fluorescence microscopy reveals that in addition to paraspeckles CF Im68 accumulates in structures that partially overlap with nuclear speckles. Analysis of synchronized cells shows that CF Im68 distribution in speckles and paraspeckles varies during the cell cycle. At an ultrastructural level, CF Im68 is associated with perichromatin fibrils, the sites of active transcription, and concentrates in interchromatin granules-associated zones. We show that CFIm68 colocalizes with bromouridine, RNA polymerase II, and the splicing factor SC35. On inhibition of transcription, endogenous CF Im68 no longer associates with perichromatin fibrils, but it can still be detected in interchromatin granules-associated zones. These observations support the idea that not only splicing but also 3' end processing occurs cotranscriptionally. Finally, fluorescence recovery after photobleaching analysis reveals that the CF Im68 fraction associated with paraspeckles moves at a rate similar to the more dispersed molecules in the nucleoplasm, demonstrating the dynamic nature of this compartment. These findings suggest that paraspeckles are a functional compartment involved in RNA metabolism in the cell nucleus.


Assuntos
Estruturas do Núcleo Celular/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Motivos de Aminoácidos , Animais , Bromouracila/análogos & derivados , Cromatina/metabolismo , Cromatina/ultraestrutura , Diclororribofuranosilbenzimidazol/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa/efeitos dos fármacos , Humanos , Mamíferos , Microscopia Eletrônica/métodos , Mutação , Proteínas Nucleares/metabolismo , Fotodegradação , Subunidades Proteicas , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Transcrição Gênica , Uridina/análogos & derivados , Uridina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA/genética
20.
J Biol Chem ; 279(34): 35788-97, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15169763

RESUMO

Cleavage factor I(m) (CF I(m)) is required for the first step in pre-mRNA 3'-end processing and can be reconstituted in vitro from its heterologously expressed 25- and 68-kDa subunits. The binding of CF I(m) to the pre-mRNA is one of the earliest steps in the assembly of the cleavage and polyadenylation machinery and facilitates the recruitment of other processing factors. We identified regions in the subunits of CF I(m) involved in RNA binding, protein-protein interactions, and subcellular localization. CF I(m)68 has a modular domain organization consisting of an N-terminal RNA recognition motif and a C-terminal alternating charge domain. However, the RNA recognition motif of CF I(m)68 on its own is not sufficient to bind RNA but is necessary for association with the 25-kDa subunit. RNA binding appears to require a CF I(m)68/25 heterodimer. Whereas multiple protein interactions with other 3'-end-processing factors are detected with CF I(m)25, CF I(m)68 interacts with SRp20, 9G8, and hTra2beta, members of the SR family of splicing factors, via its C-terminal alternating charge domain. This domain is also required for targeting CF I(m)68 to the nucleus. However, CF I(m)68 does not concentrate in splicing speckles but in foci that partially colocalize with paraspeckles, a subnuclear component in which other proteins involved in transcriptional control and RNA processing have been found.


Assuntos
Fatores de Poliadenilação e Clivagem de mRNA/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Clonagem Molecular , Células HeLa , Humanos , Conformação Molecular , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Subunidades Proteicas/genética , Processamento Pós-Transcricional do RNA , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...