Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(2): e20230840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747838

RESUMO

The extraction of valuable compounds from dried fruits and vegetables by microwave hydrodiffusion and gravity (MHG) requires previous hydration of the plant material. In this work, ultrasound was used to speed up the hydration of guarana powder before MHG extraction and increase caffeine recovery. The humidification step was speeded up with ultrasound taking only 15 min over 60 min without ultrasound. Water and 50% (v/v) ethanol were evaluated as green solvents for humidification, with a higher concentration of caffeine obtained for the hydroalcoholic solution. Ultrasound pretreatment allowed guarana extracts from MHG with two times more caffeine for both solvents evaluated. Therefore, ultrasound can be used in the hydration step before MHG extraction to reduce time and increase caffeine recovery from guarana powder.


Assuntos
Cafeína , Micro-Ondas , Paullinia , Extratos Vegetais , Pós , Cafeína/análise , Cafeína/isolamento & purificação , Paullinia/química , Extratos Vegetais/química , Gravitação , Ultrassom , Solventes
2.
An Acad Bras Cienc ; 95(suppl 1): e20221106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646713

RESUMO

An ultrasound pretreatment was used to increase anthocyanins content in blackberry juice. Whole fruits were inserted into a glass vessel without contact with any solvent, sonicated in an ultrasonic bath, and then pressed with a manual juicer. The experimental design showed that 7 min at 65% of ultrasound amplitude increased the anthocyanin content in juices from 31 to 56% for BRS Xingu, Guarani, and Xavante cultivars. Two major anthocyanins, cyanidin-3-glucoside and cyanidin-3-rutinoside were found in higher concentrations for sonicated fruits. Therefore, ultrasonic pretreatment of whole fruits increased the anthocyanins in blackberry juices using a simple, fast, and green approach.


Assuntos
Antocianinas , Rubus , Brasil , Sonicação , Frutas , Solventes
3.
Anal Chim Acta ; 1273: 341536, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423667

RESUMO

A simple, fast and promising sample preparation method based on microwave-induced combustion in disposable vessels (MIC-DV) was developed for Cl and S determination in crude oil by inductively coupled plasma optical emission spectrometry (ICP-OES). The MIC-DV consists of a new approach of conventional microwave-induced combustion (MIC). For the combustion, crude oil was pipetted on a disk of filter paper and placed on a quartz holder, followed by the addition of igniter solution (40 µL of 10 mol L-1 NH4NO3). The quartz holder was inserted into a commercial 50 mL disposable polypropylene vessel containing the absorbing solution, which was then inserted in an aluminium rotor. The combustion occurs under atmospheric pressure in a domestic microwave oven not compromising the operator's safety. The following parameters of combustion were evaluated: type, concentration and volume of absorbing solution, sample mass and the possibility of performing consecutive combustion cycles. Using MIC-DV, up to 10 mg of crude oil were efficiently digested, using 2.5 mL of ultrapure H2O as absorbing solution. Moreover, up to 5 consecutive combustion cycles were possible without analyte losses, reaching a total sample mass of 50 mg. The MIC-DV method was validated according to Eurachem Guide recommendations. Results obtained for Cl and S by MIC-DV were in agreement with those obtained using conventional MIC, as well as those obtained for S in a certified reference material of crude oil (NIST 2721). Analyte spike recovery experiments were performed and recoveries at three concentration levels ranged from 99 to 101% for Cl and from 95 to 97% for S, indicating a good accuracy. The limit of quantification achieved by ICP-OES after MIC-DV were 73 and 50 µg g-1 for Cl and S respectively, applying 5 consecutive combustion cycles.

4.
Food Chem ; 383: 132446, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35202925

RESUMO

This study aimed to verify if microwave hydrodiffusion and gravity (MHG) could efficiently extract anthocyanins from strawberries and raspberries with low environmental impact and costs. Our findings revealed that it was possible to extract 69 and 64% anthocyanins from the strawberries and raspberries in a single extraction step, respectively. When the co-product (product remaining after extracting in natura fruits) was hydrated with green solvents and subjected to re-extraction, it was possible to exhaustively extract the anthocyanins from both fruits. Using the Green Analytical Procedure Index (GAPI), the MHG proved to cause low environmental impact due to the solvents used, enabling the reuse of the co-product for food and pharmaceutical products application. Moreover, the MHG was economically viable, and the sample pretreated with distilled water was the most indicated re-extraction method. The MHG process proved to be exhaustive for strawberry and raspberry anthocyanins, thus demonstrating to be an excellent alternative for sustainable extraction.


Assuntos
Fragaria , Rubus , Antocianinas , Frutas , Micro-Ondas , Solventes
5.
3 Biotech ; 11(6): 284, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34094803

RESUMO

Several plant species synthesize biologically active secondary metabolites. Pyrrolizidine alkaloids are a large group of biotoxins produced by thousands of plant species to protect against the attack of insects and herbivores, but they are highly toxic for humans and animals. In this study, extracts from the aerial part of Senecio brasiliensis were obtained using different technologies: ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and microwave hydrodiffusion and gravity (MHG). The study aimed to evaluate the effectiveness of these technologies for the extraction of chemical compounds found in this plant, focusing on two pyrrolizidine alkaloids: integerrimine and senecionine. Influential parameters on yield and chemical composition were also evaluated: for UAE and MHG, temperature and pressure; for PLE, temperature, and percentage of ethanol. All the extraction techniques were efficient for the extraction of integerrimine and senecionine. The UAE and PLE stood out for the higher yields and number of compounds. The PLE presented a maximum yield of 18.63% for the matrix leaf and the UAE a maximum yield of 11.82% for the same matrix. These two techniques also stood out in terms of the number of compounds, once 36 different compounds were found via PLE and 17 via UAE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02845-1.

6.
Talanta ; 226: 122094, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676651

RESUMO

Vessel-inside-vessel microwave-assisted acid digestion was developed for the analysis of samples with high-unsaturated fat content. For the first time, thermal decomposition of (NH4)2S2O8 solutions was evidenced for SO3 generation in situ and gas-phase modification in pressurized digestion flasks. NMR analysis demonstrated the oxidative effect of SO3 on olefin double bonds despite incomplete mineralization of oil samples. In this context, (NH4)2S2O8 decomposition was used in association with HNO3 solutions for sample digestion and mineral determination in edible oils (safflower, coconut, flaxseed, and chia). For all oils, dissolved organic carbon (DOC) contents lower than 5% m m-1 were obtained under optimum conditions: 210 °C with an irradiation time of 40 min, 7.0 mol L-1 HNO3 and 2.0 mol L-1 (NH4)2S2O8 in 0.9 mol L-1 H2SO4. Thus, a DOC reduction of about 70% was reached compared to digestions using only HNO3 at the same conditions. Additionally, a time reduction of up to three-fold was achieved compared to typically demanding edible oil digestions. The proposed method allowed the determination of As, Cd, Cr, Mn, Ni, and Pb in edible vegetable oil samples by ICP-MS. Accuracy was evaluated against the reference method, and no significant difference was observed (p = 0.05), with wide linear ranges and good linearity (r ≥ 0.999) and LOD ranging from 0.48 (As) to 2.41 (Cd) µg L-1.

7.
Talanta ; 226: 122157, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676704

RESUMO

In this work, two microwave-assisted sample preparation methods based on combustion and ultraviolet digestion for futher determination of Br, Cl, and I in blood by inductively coupled plasma mass spectrometry were proposed. For microwave-induced combustion (MIC), blood was spotted on square pieces of Munktell TFN paper, and water and diluted NH4OH were evaluated as absorbing solutions. The stability of the analytes in the spotted blood was also evaluated. During 90 days, no changes of halogen content were observed for samples (with and without anticoagulant) on paper stored in a desiccator at 20 ± 5 °C. Whole blood was also digested by microwave-assisted ultraviolet digestion (MAD-UV). Some parameters as the volume of HNO3 solution, the influence of H2O2, and the effect of UV radiation were investigated. The interferences caused by C and K on halogen determination were carefully investigated. The results for MIC and MAD-UV and Br, Cl and I determination by ICP-MS presented no difference. The accuracy of MIC and MAD-UV was also evaluated by analyte spike with reference solutions of Br, Cl and I using inorganic species and also organic I standard (T4-levothyroxine). For both methods, recoveries were 94 and 108% for Br, 96 and 103% for Cl, and 104 and 97% for I. In case of organic I, recoveries were 99 and 111% for MIC and MAD-UV, respectively. The limits of quantification for MIC and MAD-UV after ICP-MS determination were 0.06 and 0.04 µg g-1 for Br, 14 and 30 µg g-1 for Cl and 12 and 8 ng g-1 for I, respectively. The proposed methods provide a suitable digestion approach, assuring safety and high digestion efficiency for further halogen determination in blood, with the possibility to use in clinical analysis.


Assuntos
Halogênios , Micro-Ondas , Peróxido de Hidrogênio , Espectrometria de Massas , Análise Espectral
8.
Food Chem ; 337: 127723, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799160

RESUMO

The present study aimed to verify the efficiency of microwave hydrodiffusion and gravity (MHG) by partially removing water from grapes while simultaneously obtaining a phenolic-rich extract. In addition, the effect of heating on phenolic compound degradation of pre-dehydrated grapes, the extract, and economic viability to produce both products were evaluated. Thus, a 50% reduction of moisture in the grapes was observed after 10 min while simultaneously obtaining a grape extract. Both products obtained by MHG presented high phenolic compound content and antioxidant capacity. In addition, the use of MHG on an industrial scale was found to be economically viable based on the analysis time, labor cost, and financial return of the products obtained. Thus, the method is efficient, fast, economically viable, and sustainable while simultaneously producing pre-dehydrated grapes and a phenolic-rich extract.


Assuntos
Gravitação , Micro-Ondas , Fenóis/análise , Vitis/química , Água/química , Difusão , Fenóis/isolamento & purificação
9.
Food Chem ; 344: 128671, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33261997

RESUMO

Direct analysis of flour was proposed for the determination of Cl and S by an elemental analyzer for the first time. The main operational conditions of the direct solid sampling elemental analysis (DSS-EA) were optimized and calibrated by standard solutions, rather than by certified reference material (CRM). Accuracy was evaluated by the analysis of CRM of rice flour and by comparison with analyte determination by independent techniques, i.e., ion chromatography and inductively coupled plasma optical emission spectrometry; both were carried out after microwave-induced combustion. Sample mass from 0.5 to 260 mg was used and limits of quantification of 1.2 µg g-1 for Cl and 0.2 µg g-1 for S were achieved. Wheat, whole wheat, potato and corn flour were analyzed by DSS-EA. Concentrations of Cl and S ranged from 4.8 to 685 µg g-1 and from 13 to 1328 µg g-1, respectively.


Assuntos
Cloro/análise , Farinha/análise , Análise de Alimentos/métodos , Enxofre/análise , Calibragem , Micro-Ondas , Oryza/química , Triticum/química
10.
An Acad Bras Cienc ; 92(3): e20181307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33053105

RESUMO

In this work, a simple and fast method is proposed for the determination of ethanol in homeopathic medicines using thermal infrared enthalpimetry (TIE). Samples containing alcohol in a wide concentration range (from 5% to 95% v/v) were used. Purified water or absolute ethanol was added directly into homeopathic medicine and increase of temperature was monitored using an infrared camera. Total volume, stirring speed and dispensing rate of solutions were the most significant parameters studied for method optimization. A response surface methodology (RSM) was used for optimization of the experimental conditions. The method was validated in the following parameters: selectivity, linearity, linear range, precision (repeatability and intermediate precision), limit of detection and quantification, accuracy and robustness. Linear range was obtained from 4% to 55% (ethanol, v/v). The proposed method showed accuracy in agreement with the conventional one. The proposed method it was demonstrated a good alternative for determination of ethanol in homeopathic medicines, presenting low cost, fast analysis and agreement with the principles of green analytical chemistry.


Assuntos
Etanol , Materia Medica , Água , Materia Medica/química , Temperatura
11.
Talanta ; 216: 120975, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32456938

RESUMO

This work proposes a simple device for thermometric titration using a contactless sensor. A low-cost infrared sensor (around $5) was adapted in a disposable, polystyrene vessel for monitoring the temperature to determine the endpoint of neutralization, redox, and complexation titrations, using a homemade syringe pump to titration control. Open-source software was developed to control the device using the Raspberry Pi platform and to perform automatic endpoint determination. The influence of sample volume, the flow rate of titrant, and sensor distance from the solution were evaluated to lower the variation among measurements. The parameters chosen in this regard were 10 mL of sample, 0.8 mL min-1 of titrant solution flow rate, and 3 cm of distance from the sensor to the solution. Results for the determination of the acidity of sauces and the ascorbic acid and calcium content of pharmaceutical products were compared with those from official compendia. The performance of the sensor also was compared with an infrared camera. The proposed method agreed with conventional ones to an extent ranging from 93% to 106%. The robust analytical performance and low cost of the system are essential features that could broaden the use of enthalpimetric analysis in several laboratories.

12.
Talanta ; 204: 266-271, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357292

RESUMO

Paper microzone plates and thermal infrared enthalpimetry (TIE) were combined with potato juice as natural reagent extract to perform the determination of hydrogen peroxide in pharmaceutical, bleaching, and toiletry products. A multichannel pipette was used for reagent addition simultaneously in multiple zones of paper devices, and the temperature rise was determined using an infrared camera. In order to provide suitable measurements, some parameters were optimized such as pH, volume of reagents, and stability of the extract. Results for the hydrogen peroxide were compared with those obtained using methods from official compendia (United States Pharmacopeia and ASTM D2180-17), with agreements ranging from 96 to 103%. The green analytical procedure index was used to compare the greenness of the proposed method with official ones, with clear advantages for TIE. Only microliters of samples and natural reagent extracts were required for analysis, and it was found that waste generation could be greatly reduced. After analysis, the paper device could be directly disposed since the final products of the reaction were O2 and water. According to these features, the proposed method could be considered a promising alternative to routine analysis in agreement with green analytical chemistry principles.

13.
Talanta ; 194: 314-319, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609536

RESUMO

A new strategy based on successive digestions by microwave-induced combustion (MIC) in the same reaction vessel with a single absorbing solution was proposed. As a proof of concept, F was determined by ion-selective electrode (ISE) in seafood digests. Samples were pressed as pellets (up to 0.7 g) and combusted in closed quartz vessels pressurized with oxygen. Sequential digestions were each performed (up to 4 combustion cycles) in the same vessel and using the same absorbing solution. In each cycle, a new filter paper, igniter and sample pellet (0.7 g of sample) were used. Ammonium hydroxide solutions (10-100 mmol L-1) were evaluated for F absorption. Accuracy of the proposed method was evaluated using certified reference material of oyster tissue (NIST 1566a) and also by comparison of results after pyrohydrolysis method. Up to 3 digestion cycles (total mass of 2.1 g) could be used with 50 mmol L-1 NH4OH as absorbing solution. Results were in agreement with those obtained using pyrohydrolysis and also with certified reference value; the coefficient of variation after 3 cycles was below 5%, which was considered as suitable for F determination even at low concentration. The residual carbon in digests was lower than 25 mg L-1, allowing F determination by ISE virtually free of interferences due to dissolved organic matter. The limit of quantification (LOQ) for F was 1.3 µg g-1 (using 2.1 g of seafood), which is almost 4 times lower than the LOQ obtained using the reference method (pyrohydrolysis). Contrary to the reference method, this relatively low LOQ allowed the determination of F in all the seafood samples analysed. Taking into account that only 6 mL of diluted NH4OH solution (50 mmol L-1) were used and the suitable LOQ, the proposed sequential digestion MIC method can be recommended for further F determination in trace levels in seafood, even using a low-cost technique such as ISE, instead of other, more powerful techniques, such as ion chromatography.

14.
Food Chem ; 258: 59-62, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29655754

RESUMO

An innovative use of thermal infrared enthalpimetry (TIE) is proposed for the determination of alcoholic content of red and white wines. Notwithstanding the presence of ethanol in beverages, absolute ethanol was added directly to wines, and the temperature rise caused by the heat of dilution was monitored using an infrared camera. Analytical signals were obtained in only 10 s for four samples simultaneously, and a calibration curve was constructed with hydroalcoholic reference solutions. A linear calibration curve was obtained from 3.0 to 18.0% (v/v) ethanol (R2 = 0.9987). The results showed agreement ranging from 98.2 to 104.0% with 942.06 and 969.12 methods of AOAC. Organic compounds (e.g., sugar) did not interfere in the determinations. The proposed method provided fast results, with a throughput of 480 samples per hour and negligible energy consumption (0.001 kWh). In addition, the consumption of reagents was reduced when compared with conventional method fulfilling green analytical chemistry requirements.


Assuntos
Etanol/análise , Fotografação , Espectrofotometria Infravermelho , Vinho/análise , Calibragem , Etanol/normas , Química Verde , Processamento de Imagem Assistida por Computador , Espectrofotometria Infravermelho/normas , Vinho/normas
15.
Anal Chem ; 90(7): 4363-4369, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561585

RESUMO

A new method for analytical applications based on the Maxwell-Wagner effect is proposed. Considering the interaction of carbonaceous materials with an electromagnetic field in the microwave frequency range, a very fast heating is observed due to interfacial polarization that results in localized microplasma formation. Such effect was evaluated in this work using a monomode microwave system, and temperature was recorded using an infrared camera. For analytical applications, a closed reactor under oxygen pressure was evaluated. The combination of high temperature and oxidant atmosphere resulted in a very effective self-ignition reaction of sample, allowing its use as sample preparation procedure for further elemental analysis. After optimization, a high sample mass (up to 600 mg of coal and graphite) was efficiently digested using only 4 mol L-1 HNO3 as absorbing solution. Several elements (Ba, Ca, Fe, K, Li, Mg, Na, and Zn) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Accuracy was evaluated by using a certified reference material (NIST 1632b). Blanks were negligible, and only a diluted solution was required for analytes absorption preventing residue generation and making the proposed method in agreement with green chemistry recommendations. The feasibility of the proposed method for hard-to-digest materials, the minimization of reagent consumption, and the possibility of multi elemental analysis with lower blanks and better limits of detection can be considered as the main advantages of this method.

16.
Talanta ; 174: 64-71, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738635

RESUMO

In the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL-1 NH4NO3), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NH4NO3 concentration and irradiation time on cellulose oxidation was evaluated. The morphology of the discs surface was characterized by SEM before and after irradiation in an inert atmosphere. According to the results, the surface temperature of the discs increased near to 100°C and remained in this temperature for few seconds while water evaporate. After that, temperature increased over 200°C due to the thermal decomposition of NH4NO3 salt, releasing a large amount of energy that accelerates cellulose oxidation. The higher the igniter concentration, the shorter was the microwave irradiation time for cellulose oxidation. The SEM images revealed that cellulose disc was more porous after microwave irradiation, enhancing oxygen diffusion within the paper and making easier its ignition. The EDS spectrum of cellulose and glass fiber discs showed that signal intensity for nitrogen decreased after microwave irradiation, showing that NH4NO3 was consumed during this process. Therefore, it was demonstrated that the ignition process is the result of synergic interaction of NH4NO3 thermal decomposition and organic matter oxidation (cellulose) releasing heat and feeding the chain reaction.

17.
Talanta ; 171: 335-340, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28551148

RESUMO

A simple and fast method is proposed for determining the alcoholic content of distilled beverages by thermal infrared enthalpimetry (TIE), in which purified water is added directly and the temperature rise caused by the heat of dilution is monitored using an infrared camera. A calibration curve was constructed with hydroalcoholic reference solutions to determine the alcoholic content of vodka, whisky, and cachaça. The influence of the total volume of solutions in the reactor, the stirring speed, the dispensing rate, and the ratio between hydroalcoholic samples and water were evaluated to reach an optimum mixture and provide low variation among measurements. Optimized conditions for those respective parameters were 2.4mL, 200rpm, 0.57mLs-1, and 1:1. To evaluate the accuracy, alcoholic content was also determined by a conventional method (AOAC method 942.06, pycnometry), with agreement ranging from 99.4% to 100.9%. No sample preparation (e.g., dilution or distillation) was required with the proposed method, decreasing the time required for analysis by at least one order of magnitude. The proposed method required less energy consumption by a factor of about three thousand in comparison with the conventional method. The proposed TIE method was robust, able to determine the alcoholic content of diverse distilled beverages. Due to these features and the high sample throughput (up to 480 samples per hour), the proposed method could be considered suitable for routine analysis and agrees with the principles of green analytical chemistry.


Assuntos
Bebidas Alcoólicas/análise , Calorimetria/métodos , Etanol/análise , Raios Infravermelhos , Temperatura
18.
Anal Bioanal Chem ; 408(17): 4547-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27020927

RESUMO

Interest in the determination of elemental impurities in pharmaceuticals has increased in recent years because of changes in regulatory requirements and the need for changing or updating the current limit tests recommended in pharmacopeias. Inductively coupled plasma (ICP) optical emission spectrometry and ICP mass spectrometry are suitable alternatives to perform multielemental analysis for this purpose. The main advantages and limitations of these techniques are described, covering the applications reported in the literature in the last 10 years mainly for active pharmaceutical ingredients, raw materials, and pharmaceutical dosage forms. Strategies used for sample preparation, including dissolution in aqueous or organic solvents, extraction, wet digestion and combustion methods are described, as well as direct solid analysis and ICP-based systems applied for speciation analysis. Interferences observed during the analysis of pharmaceutical products using ICP-based methods are discussed. Methods currently recommended by pharmacopeias for elemental impurities are also covered, showing that the use of ICP-based methods could be considered as a trend in the determination of these impurities in pharmaceuticals. However, the development of a general method that is accurate for all elemental impurities and the establishment of an official method are still challenges. In this regard, the main drawbacks and suitable alternatives are discussed.


Assuntos
Espectrometria de Massas/métodos , Preparações Farmacêuticas/química
19.
Talanta ; 144: 1052-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452926

RESUMO

A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES.

20.
Anal Chim Acta ; 837: 16-22, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25000853

RESUMO

The present work evaluates the influence of vessel cooling simultaneously to microwave-assisted digestion performed in a closed system with diluted HNO3 under O2 pressure. The effect of outside air flow-rates (60-190 m(3) h(-1)) used for cooling of digestion vessels was evaluated. An improvement in digestion efficiency caused by the reduction of HNO3 partial pressure was observed when using higher air flow-rate (190 m(3) h(-1)), decreasing the residual carbon content for whole milk powder from 21.7 to 9.3% (lowest and highest air flow-rate, respectively). The use of high air flow-rate outside the digestion vessel resulted in a higher temperature gradient between liquid and gas phases inside the digestion vessel and improved the efficiency of sample digestion. Since a more pronounced temperature gradient was obtained, it contributed for increasing the condensation rate and thus allowed a reduction in the HNO3 partial pressure of the digestion vessel, which improved the regeneration of HNO3. An air flow-rate of 190 m(3) h(-1) was selected for digestion of animal fat, bovine liver, ground soybean, non fat milk powder, oregano leaves, potato starch and whole milk powder samples, and a standard reference material of apple leaves (NIST 1515), bovine liver (NIST 1577) and whole milk powder (NIST 8435) for further metals determination by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results were in agreement with certified values and no interferences caused by matrix effects during the determination step were observed.


Assuntos
Técnicas de Química Analítica/métodos , Micro-Ondas , Ácido Nítrico/química , Oxigênio/química , Temperatura , Tecido Adiposo , Animais , Bovinos , Laticínios , Análise de Alimentos , Fígado , Malus , Origanum , Folhas de Planta , Solanum tuberosum , Glycine max , Amido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...