Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(9): 6329-6357, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33929852

RESUMO

Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV via binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound 25, which has potent activity against Gram-positive bacteria, a favorable in vitro safety profile, and excellent in vivo pharmacokinetic properties. Compound 25 was found to be efficacious against fluoroquinolone-sensitive Staphylococcus aureus infection in a mouse thigh model at lower doses than moxifloxacin. An X-ray crystal structure of the ternary complex formed by topoisomerase IV from Klebsiella pneumoniae, compound 25, and cleaved DNA indicates that this compound does not engage in a water-metal ion bridge interaction and forms no direct contacts with residues in the quinolone resistance determining region (QRDR). This suggests a structural basis for the reduced impact of QRDR mutations on antibacterial activity of 25 compared to fluoroquinolones.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Desenho de Fármacos , Fluoroquinolonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Animais , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Camundongos , Inibidores da Topoisomerase II/química
2.
J Med Chem ; 63(23): 14885-14904, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33258605

RESUMO

Overexpression of PIM 1, 2, and 3 kinases is frequently observed in many malignancies. Previously, we discovered a potent and selective pan-PIM kinase inhibitor, compound 2, currently in phase I clinical trials. In this work, we were interested in replacing the amino group on the cyclohexane ring in compound 2 with a hydroxyl group. Structure-based drug design led to cellularly potent but metabolically unstable tetra-substituted cyclohexyl diols. Efforts on the reduction of Log D by introducing polar heterocycles improved metabolic stability. Incorporating fluorine to the tetra-substituted cyclohexyl diol moiety further reduced Log D, resulting in compound 14, a cellularly potent tetra-substituted cyclohexyl diol inhibitor with moderate metabolic stability and good permeability. We also describe the development of efficient and scalable synthetic routes toward synthetically challenging tetra-substituted cyclohexyl diol compounds. In particular, intermediate 36 was identified as a versatile intermediate, enabling a large-scale synthesis of highly substituted cyclohexane derivatives.


Assuntos
Cicloexanóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Linhagem Celular Tumoral , Cicloexanóis/síntese química , Cicloexanóis/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade
3.
J Med Chem ; 63(14): 7773-7816, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32634310

RESUMO

Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1H)-ones, exemplified by 34, that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens. X-ray crystallography reveals that 34 occupies the classical quinolone binding site in the topoisomerase IV-DNA cleavage complex but does not form significant contacts with residues in the quinolone resistance determining region.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Fluoroquinolonas/síntese química , Fluoroquinolonas/metabolismo , Fluoroquinolonas/toxicidade , Bactérias Gram-Negativas/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/toxicidade
4.
J Med Chem ; 61(20): 9360-9370, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30226381

RESUMO

This report summarizes the identification and synthesis of novel LpxC inhibitors aided by computational methods that leveraged numerous crystal structures. This effort led to the identification of oxazolidinone and isoxazoline inhibitors with potent in vitro activity against P. aeruginosa and other Gram-negative bacteria. Representative compound 13f demonstrated efficacy against P. aeruginosa in a mouse neutropenic thigh infection model. The antibacterial activity against K. pneumoniae could be potentiated by Gram-positive antibiotics rifampicin (RIF) and vancomycin (VAN) in both in vitro and in vivo models.


Assuntos
Amidoidrolases/antagonistas & inibidores , Isoxazóis/química , Isoxazóis/farmacologia , Oxazolidinonas/química , Oxazolidinonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular
5.
Bioorg Med Chem Lett ; 26(9): 2328-32, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26995528

RESUMO

The Pim proteins (1, 2 and 3) are serine/threonine kinases that have been found to be upregulated in many hematological malignancies and solid tumors. As a result of overlapping functions among the three isoforms, inhibition of all three Pim kinases has become an attractive strategy for cancer therapy. Herein we describe our efforts in identifying potent pan-PIM inhibitors that are derived from our previously reported pyridyl carboxamide scaffold as part of a medicinal chemistry strategy to address metabolic stability.


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Amidas/química , Cristalografia por Raios X , Relação Estrutura-Atividade
6.
J Med Chem ; 58(21): 8373-86, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26505898

RESUMO

Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound 8 (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound 3, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound 8 entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Ácidos Picolínicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Amidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Halogenação , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Modelos Moleculares , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
7.
Bioorg Med Chem Lett ; 25(17): 3626-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26144345

RESUMO

A series of structure based drug design hypotheses and focused screening efforts drove improvements in the potency and lipophilic efficiency of tetrahydro-pyrazolopyridine based ERK2 inhibitors. Elaboration of a fragment chemical lead established a new lipophilic aryl-Tyr interaction resulting in a substantial potency improvement. Subsequent cleavage of the lipophilic moiety led to reconfiguration of the ligand bound binding cleft. The reconfiguration established a polar contact between a newly liberated N-H and a vicinal Asp, resulting in further improvements in lipophilic efficiency and in vitro clearance.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Piridinas/química , Relação Estrutura-Atividade , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/química , Modelos Moleculares , Conformação Proteica , Ratos
8.
ACS Med Chem Lett ; 6(7): 776-81, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26191365

RESUMO

The discovery of inhibitors targeting novel allosteric kinase sites is very challenging. Such compounds, however, once identified could offer exquisite levels of selectivity across the kinome. Herein we report our structure-based optimization strategy of a dibenzodiazepine hit 1, discovered in a fragment-based screen, yielding highly potent and selective inhibitors of PAK1 such as 2 and 3. Compound 2 was cocrystallized with PAK1 to confirm binding to an allosteric site and to reveal novel key interactions. Compound 3 modulated PAK1 at the cellular level and due to its selectivity enabled valuable research to interrogate biological functions of the PAK1 kinase.

9.
10.
Clin Cancer Res ; 20(7): 1834-45, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24474669

RESUMO

PURPOSE: PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies. EXPERIMENTAL DESIGN: Pan-PIM inhibitors have proven difficult to develop because PIM2 has a low Km for ATP and, thus, requires a very potent inhibitor to effectively block the kinase activity at the ATP levels in cells. We developed a potent and specific pan-PIM inhibitor, LGB321, which is active on PIM2 in the cellular context. RESULTS: LGB321 is active on PIM2-dependent multiple myeloma cell lines, where it inhibits proliferation, mTOR-C1 signaling and phosphorylation of BAD. Broad cancer cell line profiling of LGB321 demonstrates limited activity in cell lines derived from solid tumors. In contrast, significant activity in cell lines derived from diverse hematological lineages was observed, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), multiple myeloma and non-Hodgkin lymphoma (NHL). Furthermore, we demonstrate LGB321 activity in the KG-1 AML xenograft model, in which modulation of pharmacodynamics markers is predictive of efficacy. Finally, we demonstrate that LGB321 synergizes with cytarabine in this model. CONCLUSIONS: We have developed a potent and selective pan-PIM inhibitor with single-agent antiproliferative activity and show that it synergizes with cytarabine in an AML xenograft model. Our results strongly support the development of Pan-PIM inhibitors to treat hematologic malignancies.


Assuntos
Neoplasias Hematológicas/terapia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas/genética , Animais , Linhagem Celular Tumoral , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
ACS Med Chem Lett ; 4(12): 1193-7, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900629

RESUMO

Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described.

12.
Bioorg Med Chem Lett ; 21(21): 6366-9, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21945284

RESUMO

A series of novel 3,5-disubstituted indole derivatives as potent and selective inhibitors of all three members of the Pim kinase family is described. High throughput screen identified a pan-Pim kinase inhibitor with a promiscuous scaffold. Guided by structure-based drug design, SAR of the series afforded a highly selective indole chemotype that was further developed into a potent set of compounds against Pim-1, 2, and 3 (Pim-1 and Pim-3: IC(50)≤2nM and Pim-2: IC(50)≤100nM).


Assuntos
Descoberta de Drogas , Indóis/química , Indóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Concentração Inibidora 50 , Modelos Moleculares , Relação Estrutura-Atividade
14.
Curr Top Med Chem ; 6(11): 1129-59, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16842151

RESUMO

Purine-binding proteins are of critical importance to all living organisms. Approximately 13% of the human genome is devoted to coding for purine-binding proteins. Given their importance, purine-binding proteins are attractive targets for chemotherapeutic intervention against a variety of disease states, particularly cancer. Modern computational and biophysical techniques, combined together in a structure-based drug design approach, aid immensely in the discovery of inhibitors of these targets. This review covers the process of modern structure-based drug design and gives examples of its use in discovery and development of drugs that target purine-binding proteins. The targets reviewed are human purine nucleoside phosphorylase, human epidermal growth factor receptor kinase, and human kinesin spindle protein.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Proteoma , Nucleotídeos de Purina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Nucleotídeos de Purina/genética , Nucleotídeos de Purina/metabolismo , Relação Estrutura-Atividade
15.
J Mol Biol ; 357(5): 1471-82, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16488429

RESUMO

Multiple solvent crystal structures (MSCS) of porcine pancreatic elastase were used to map the binding surface the enzyme. Crystal structures of elastase in neat acetonitrile, 95% acetone, 55% dimethylformamide, 80% 5-hexene-1,2-diol, 80% isopropanol, 80% ethanol and 40% trifluoroethanol showed that the organic solvent molecules clustered in the active site, were found mostly unclustered in crystal contacts and in general did not bind elsewhere on the surface of elastase. Mixtures of 40% benzene or 40% cyclohexane in 50% isopropanol and 10% water showed no bound benzene or cyclohexane molecules, but did reveal bound isopropanol. The clusters of organic solvent probe molecules coincide with pockets occupied by known inhibitors. MSCS also reveal the areas of plasticity within the elastase binding site and allow for the visualization of a nearly complete first hydration shell. The pattern of organic solvent clusters determined by MSCS for elastase is consistent with patterns for hot spots in protein-ligand interactions determined from database analysis in general. The MSCS method allows probing of hot spots, plasticity and hydration simultaneously, providing a powerful complementary strategy to guide computational methods currently in development for binding site determination, ligand docking and design.


Assuntos
Elastase Pancreática/química , Conformação Proteica , Solventes , Animais , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Elastase Pancreática/metabolismo , Suínos , Água/química
16.
Biochemistry ; 43(11): 3057-67, 2004 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15023057

RESUMO

CDP-D-glucose 4,6-dehydratase catalyzes the conversion of CDP-D-glucose to CDP-4-keto-6-deoxyglucose in an NAD(+)-dependent manner. The product of this conversion is a building block for a variety of primary antigenic determinants in bacteria, possibly implicated directly in reactive arthritis. Here, we describe the solution of the high-resolution crystal structure of CDP-D-glucose 4,6-dehydratase from Yersinia pseudotuberculosis in the resting state. This structure represents the first CDP nucleotide utilizing dehydratase of the short-chain dehydrogenase/reductase (SDR) family to be determined, as well as the first tetrameric structure of the subfamily of SDR enzymes in which NAD(+) undergoes a full reaction cycle. On the basis of a comparison of this structure with structures of homologous enzymes, a chemical mechanism is proposed in which Tyr157 acts as the catalytic base, initiating hydride transfer by abstraction of the proton from the sugar 4'-hydroxyl. Concomitant with the removal of the proton from the 4'-hydroxyl oxygen, the sugar 4'-hydride is transferred to the B face of the NAD(+) cofactor, forming the reduced cofactor and a CDP-4-keto-d-glucose intermediate. A conserved Lys161 most likely acts to position the NAD(+) cofactor so that hydride transfer is favorable and/or to reduce the pK(a) of Tyr157. Following substrate oxidation, we propose that Lys134, acting as a base, would abstract the 5'-hydrogen of CDP-4-keto-D-glucose, priming the intermediate for the spontaneous loss of water. Finally, the resulting Delta(5,6)-glucoseen intermediate would be reduced suprafacially by the cofactor, and reprotonation at C-5' is likely mediated by Lys134.


Assuntos
Proteínas de Bactérias/química , Hidroliases/química , Yersinia pseudotuberculosis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Humanos , Hidroliases/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , NAD/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , UDPglucose 4-Epimerase/química
17.
Biochem Biophys Res Commun ; 310(3): 1026-31, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14550307

RESUMO

SU9516 is a 3-substituted indolinone compound with demonstrated potent and selective inhibition toward cyclin dependent kinases (cdks). Here, we describe the kinetic characterization of this inhibition with respect to cdk2, 1, and 4, along with the crystal structure in complex with cdk2. The molecule is competitive with respect to ATP for cdk2/cyclin A, with a K(i) value of 0.031 microM. Similarly, SU9516 inhibits cdk2/cyclin E and cdk1/cyclin B1 in an ATP-competitive manner, although at a 2- to 8-fold reduced potency. In contrast, the compound exhibited non-competitive inhibition with respect to ATP toward cdk4/cyclin D1, with a 45-fold reduced potency. The X-ray crystal structure of SU9516 bound to cdk2 revealed interactions between the molecule and Leu83 and Glu81 of the kinase. This study should aid in the development of more potent and selective cdk inhibitors for potential therapeutic agents.


Assuntos
Quinases relacionadas a CDC2 e CDC28/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Imidazóis/farmacologia , Indóis/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Linhagem Celular , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Humanos , Insetos , Cinética , Modelos Químicos , Ligação Proteica
18.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 2): 370-3, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11807280

RESUMO

The enzyme CDP-D-glucose 4,6-dehydratase (EC 4.2.1.45) is an NAD(+)-dependent oxidoreductase which catalyzes the irreversible conversion of CDP-D-glucose to CDP-4-keto-6-deoxy-D-glucose. The product of this reaction is an intermediate in the synthesis of all CDP-linked 3,6-dideoxyhexoses, an important class of antigenic determinants found in the lipopolysaccharide layer of Gram-negative bacteria. Crystals of a recombinant form of this enzyme from Yersinia pseudotuberculosis have been grown in two crystal forms, both possessing pseudo-translational non-crystallographic symmetry, with dramatically different diffraction characteristics. A complete 1.8 A data set has been collected from the primitive orthorhombic crystal form, for which the non-crystallographic symmetry is described in detail.


Assuntos
Hidroliases/química , Yersinia pseudotuberculosis/enzimologia , Cristalização , Cristalografia por Raios X , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...