Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100550

RESUMO

Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly. We identified KIF1BP in the interactome of citron kinase (CITK, also known as CIT), a protein produced by the primary hereditary microcephaly 17 (MCPH17) gene. KIF1BP and CITK interact under physiological conditions in mitotic cells. Similar to CITK, KIF1BP is enriched at the midbody ring and is required for cytokinesis. The association between KIF1BP and CITK can be influenced by CITK activity, and the two proteins may antagonize each other for their midbody localization. KIF1BP knockdown decreases microtubule stability, increases KIF23 midbody levels and impairs midbody localization of KIF14, as well as of chromosome passenger complex. These data indicate that KIF1BP is a CITK interactor involved in midbody maturation and abscission, and suggest that cytokinesis failure may contribute to the microcephaly phenotype observed in GOSHS.


Assuntos
Anormalidades Craniofaciais , Doença de Hirschsprung , Citocinese/genética , Células HeLa , Humanos , Fuso Acromático
3.
Front Mol Biosci ; 8: 618869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869277

RESUMO

Spinal cord injury (SCI) affects 6 million people worldwide with no available treatment. Despite research advances, the inherent poor regeneration potential of the central nervous system remains a major hurdle. Small RNAs (sRNAs) 19-33 nucleotides in length are a set of non-coding RNA molecules that regulate gene expression and have emerged as key players in regulating cellular events occurring after SCI. Here we profiled a class of sRNA known as microRNAs (miRNAs) following SCI in the cortex where the cell bodies of corticospinal motor neurons are located. We identified miR-7b-3p as a candidate target given its significant upregulation after SCI in vivo and we screened by miRWalk PTM the genes predicted to be targets of miR-7b-3p (among which we identified Wipf2, a gene regulating neurite extension). Moreover, 16 genes, involved in neural regeneration and potential miR-7b-3p targets, were found to be downregulated in the cortex following SCI. We also analysed miR-7b-3p function during cortical neuron development in vitro: we observed that the overexpression of miR-7b-3p was important (1) to maintain neurons in a more immature and, likely, plastic neuronal developmental phase and (2) to contrast the apoptotic pathway; however, in normal conditions it did not affect the Wipf2 expression. On the contrary, the overexpression of miR-7b-3p upon in vitro oxidative stress condition (mimicking the SCI environment) significantly reduced the expression level of Wipf2, as observed in vivo, confirming it as a direct miR-7b-3p target. Overall, these data suggest a dual role of miR-7b-3p: (i) the induction of a more plastic neuronal condition/phase, possibly at the expense of the axon growth, (ii) the neuroprotective role exerted through the inhibition of the apoptotic cascade. Increasing the miR-7b-3p levels in case of SCI could reactivate in adult neurons silenced developmental programmes, supporting at the same time the survival of the axotomised neurons.

4.
Cancers (Basel) ; 12(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111106

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor in children, and it is classified into four biological subgroups: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The current treatment is surgery, followed by irradiation and chemotherapy. Unfortunately, these therapies are only partially effective. Citron kinase protein (CITK) has been proposed as a promising target for SHH MB, whose inactivation leads to DNA damage and apoptosis. D283 and D341 cell lines (Group 3/Group 4 MB) were silenced with established siRNA sequences against CITK, to assess the direct effects of its loss. Next, D283, D341, ONS-76 and DAOY cells were treated with ionizing radiation (IR) or cisplatin in combination with CITK knockdown. CITK depletion impaired proliferation and induced cytokinesis failure and apoptosis of G3/G4 MB cell lines. Furthermore, CITK knockdown produced an accumulation of DNA damage, with reduced RAD51 nuclear levels. Association of IR or cisplatin with CITK depletion strongly impaired the growth potential of all tested MB cells. These results indicate that CITK inactivation could prevent the expansion of G3/G4 MB and increase their sensitivity to DNA-damaging agents, by impairing homologous recombination. We suggest that CITK inhibition could be broadly associated with IR and adjuvant therapy in MB treatment.

5.
Small GTPases ; 11(2): 122-130, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29185861

RESUMO

The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Variação Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema Nervoso/citologia , Neurônios/citologia , Fenótipo , Proteínas Serina-Treonina Quinases/genética
6.
Front Neurosci ; 13: 1081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649502

RESUMO

Down Syndrome (DS) is the most common genetic disorder associated with intellectual disability (ID). Excitatory neurons of DS patients and mouse models show decreased size of dendritic field and reduction of spine density. Whether these defects are caused by cell autonomous alterations or by abnormal multicellular circuitry is still unknown. In this work, we explored this issue by culturing cortical neurons obtained from two mouse models of DS: the widely used Ts65Dn and the less characterized Ts2Cje. We observed that, in the in vitro conditions, axon specification and elongation, as well as dendritogenesis, take place without evident abnormalities, indicating that the initial phases of neuronal differentiation do not suffer from the presence of an imbalanced genetic dosage. Conversely, our analysis highlighted differences between trisomic and euploid neurons in terms of reduction of spine density, in accordance with in vivo data obtained by other groups, proposing the presence of a cell-intrinsic malfunction. This work suggests that the characteristic morphological defects of DS neurons are likely to be caused by the possible combination of cell-intrinsic defects together with cell-extrinsic cues. Additionally, our data support the possibility of using the more sustainable line Ts2Cje as a standard model for the study of DS.

7.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31035417

RESUMO

Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Microcefalia/metabolismo , Microcefalia/patologia , Animais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo
8.
Cell Death Dis ; 9(12): 1155, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459303

RESUMO

The authors wish to point out that the name of the first author is appearing incorrectly on Pubmed: it should be El Ghouzzi V (and not Ghouzzi VE). In addition, the words "and p53" appear at the end of the title in the original publication ( https://www.nature.com/articles/cddis2016266 ) and in the previous erratum version ( https://www.nature.com/articles/cddis2016446 ). This is not correct.

9.
Cell Mol Life Sci ; 75(21): 3963-3976, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30116853

RESUMO

Maintenance of genome stability is a crucial cellular function for normal mammalian development and physiology. However, despite the general relevance of this process, genome stability alteration due to genetic or non-genetic conditions has a particularly profound impact on the developing cerebral cortex. In this review, we will analyze the main pathways involved in maintenance of genome stability, the consequences of their alterations with regard to central nervous system development, as well as the possible molecular and cellular basis of this specificity.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Anemia de Fanconi/genética , Instabilidade Genômica/genética , Anemia de Fanconi/patologia , Humanos , Neurogênese/genética
10.
Cancer Res ; 78(16): 4599-4612, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29921697

RESUMO

Medulloblastoma is the most common malignant brain tumor in children. Current treatment for medulloblastoma consists of surgery followed by irradiation of the whole neuraxis and high-dose multiagent chemotherapy, a partially effective strategy associated with highly invalidating side effects. Therefore, identification and validation of novel target molecules capable of contrasting medulloblastoma growth without disturbing brain development is needed. Citron kinase protein (CITK), encoded by primary microcephaly gene MCPH17, is required for normal proliferation and survival of neural progenitors. Constitutive loss of CITK leads to cytokinesis failure, chromosome instability, and apoptosis in the developing brain, but has limited effects on other tissues. On this basis, we hypothesized that CITK could be an effective target for medulloblastoma treatment. In medulloblastoma cell lines DAOY and ONS-76, CITK knockdown increased both cytokinesis failure and DNA damage, impairing proliferation and inducing cell senescence and apoptosis via TP53 or TP73. Similar effects were obtained in the NeuroD-SmoA1 transgenic mouse model, in which CITK deletion increased apoptotic cells and senescence markers such as P21CIP1, P27KIP1, and P16INK4A Most importantly, CITK deletion decreased tumor growth and increased overall survival in these mice, with no apparent side effects. These results suggest that CITK can be a useful molecular target for medulloblastoma treatment.Significance:In vitro and in vivo proof of concept identifies citron kinase protein as a suitable target for medulloblastoma treatment.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4599/F1.large.jpg Cancer Res; 78(16); 4599-612. ©2018 AACR.


Assuntos
Biomarcadores Tumorais/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Meduloblastoma/genética , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular/genética , Instabilidade Cromossômica/genética , Citocinese/genética , Dano ao DNA/genética , Humanos , Meduloblastoma/patologia , Camundongos
11.
Sci Rep ; 8(1): 7254, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740022

RESUMO

The small-GTPase Rac1 is a key molecular regulator linking extracellular signals to actin cytoskeleton dynamics. Loss-of-function mutations in RAC1 and other genes of the Rac signaling pathway have been implicated in the pathogenesis of Intellectual Disability (ID). The Rac1 activity is negatively controlled by GAP proteins, however the effect of Rac1 hyperactivity on neuronal networking in vivo has been poorly studied. ArhGAP15 is a Rac-specific negative regulator, expressed in the main subtypes of pyramidal cortical neurons. In the absence of ArhGAP15, cortical pyramidal neurons show defective neuritogenesis, delayed axonal elongation, reduced dendritic branching, both in vitro and in vivo. These phenotypes are associated with altered actin dynamics at the growth cone due to increased activity of the PAK-LIMK pathway and hyperphosphorylation of ADF/cofilin. These results can be explained by shootin1 hypo-phosphorylation and uncoupling with the adhesion system. Functionally, ArhGAP15-/- mice exhibit decreased synaptic density, altered electroencephalographic rhythms and cognitive deficits. These data suggest that both hypo- and hyperactivation of the Rac pathway due to mutations in Rac1 regulators can result in conditions of ID, and that a tight regulation of Rac1 activity is required to attain the full complexity of the cortical networks.


Assuntos
Dendritos/genética , Neuritos/fisiologia , Neuropeptídeos/genética , Células Piramidais/fisiologia , Proteínas rac1 de Ligação ao GTP/genética , Actinas/genética , Actinas/metabolismo , Animais , Axônios/metabolismo , Proteínas Ativadoras de GTPase/genética , Cones de Crescimento/metabolismo , Mutação com Perda de Função/genética , Camundongos , Neuritos/metabolismo , Fosforilação , Células Piramidais/metabolismo , Transdução de Sinais/genética
12.
J Cell Sci ; 131(8)2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29588396

RESUMO

Abscission is the final step of cytokinesis whereby the intercellular bridge (ICB) linking the two daughter cells is cut. The ICB contains a structure called the midbody, required for the recruitment and organization of the abscission machinery. Final midbody severing is mediated by formation of secondary midbody ingression sites, where the ESCRT III component CHMP4B is recruited to mediate membrane fusion. It is presently unknown how cytoskeletal elements cooperate with CHMP4B to mediate abscission. Here, we show that F-actin is associated with midbody secondary sites and is necessary for abscission. F-actin localization at secondary sites depends on the activity of RhoA and on the abscission regulator citron kinase (CITK). CITK depletion accelerates loss of F-actin proteins at the midbody and subsequent cytokinesis defects are reversed by restoring actin polymerization. Conversely, midbody hyperstabilization produced by overexpression of CITK and ANLN is reversed by actin depolymerization. CITK is required for localization of F-actin and ANLN at the abscission sites, as well as for CHMP4B recruitment. These results indicate that control of actin dynamics downstream of CITK prepares the abscission site for the final cut.


Assuntos
Actinas/metabolismo , Citocinese/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Humanos
14.
Cell Rep ; 18(7): 1674-1686, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199840

RESUMO

Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development.


Assuntos
Instabilidade Cromossômica/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Microcefalia/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteína Supressora de Tumor p53/genética , Animais , Citocinese/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA/genética , Drosophila/genética , Recombinação Homóloga/genética , Mamíferos/genética , Camundongos , Rad51 Recombinase/genética , Radiação Ionizante
16.
Cell Death Dis ; 7(10): e2440, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27787521

RESUMO

Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure. In this report, we explored the possible similarities between transcriptional responses induced by ZIKV in human neural progenitors and those elicited by three different genetic mutations leading to severe forms of microcephaly in mice. We found that the strongest similarity between all these conditions is the activation of common P53 downstream genes. In agreement with these observations, we report that ZIKV infection increases total P53 levels and nuclear accumulation, as well as P53 Ser15 phosphorylation, correlated with genotoxic stress and apoptosis induction. Interestingly, increased P53 activation and apoptosis are induced not only in cells expressing high levels of viral antigens but also in cells showing low or undetectable levels of the same proteins. These results indicate that P53 activation is an early and specific event in ZIKV-infected cells, which could result from cell-autonomous and/or non-cell-autonomous mechanisms. Moreover, we highlight a small group of P53 effector proteins that could act as critical mediators, not only in ZIKV-induced microcephaly but also in many genetic microcephaly syndromes.


Assuntos
Dano ao DNA/genética , Microcefalia/genética , Mutação/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Proteína Supressora de Tumor p53/metabolismo , Zika virus/fisiologia , Animais , Apoptose/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genética , Infecção por Zika virus/genética , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
17.
EMBO Rep ; 17(10): 1396-1409, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27562601

RESUMO

Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação a Calmodulina/genética , Linhagem Celular , Drosophila , Complexo Dinactina/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transporte Proteico , Interferência de RNA
18.
PLoS One ; 9(4): e93721, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695496

RESUMO

In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.


Assuntos
Actinas/metabolismo , Diferenciação Celular/fisiologia , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Hipocampo/metabolismo , Neuritos/metabolismo , Ratos , Ubiquitina-Proteína Ligases/genética
19.
J Neurosci ; 34(4): 1542-53, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453341

RESUMO

A major challenge in the neuroscience field is the identification of molecules and pathways that control synaptic plasticity and memory. Dendritic spines play a pivotal role in these processes, as the major sites of excitatory synapses in neuronal communication. Previous studies have shown that the scaffold protein p140Cap localizes into dendritic spines and that its knockdown negatively modulates spine shape in culture. However, so far, there is no information on its in vivo relevance. By using a knock-out mouse model, we here demonstrate that p140Cap is a key element for both learning and synaptic plasticity. Indeed, p140Cap(-/-) mice are impaired in object recognition test, as well as in LTP and in LTD measurements. The in vivo effects of p140Cap loss are presumably attenuated by noncell-autonomous events, since primary neurons obtained from p140Cap(-/-) mice show a strong reduction in number of mushroom spines and abnormal organization of synapse-associated F-actin. These phenotypes are most likely caused by a local reduction of the inhibitory control of RhoA and of cortactin toward the actin-depolymerizing factor cofilin. These events can be controlled by p140Cap through its capability to directly inhibit the activation of Src kinase and by its binding to the scaffold protein Citron-N. Altogether, our results provide new insight into how protein associated with dynamic microtubules may regulate spine actin organization through interaction with postsynaptic density components.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Imunofluorescência , Hipocampo/metabolismo , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Ratos , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
20.
PLoS One ; 8(9): e74481, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040258

RESUMO

MOTIVATION: RNA molecules specifically enriched in the neuropil of neuronal cells and in particular in dendritic spines are of great interest for neurobiology in virtue of their involvement in synaptic structure and plasticity. The systematic recognition of such molecules is therefore a very important task. High resolution images of RNA in situ hybridization experiments contained in the Allen Brain Atlas (ABA) represent a very rich resource to identify them and have been so far exploited for this task through human-expert analysis. However, software tools that may automatically address the same objective are not very well developed. RESULTS: In this study we describe an automatic method for exploring in situ hybridization data and discover neuropil-enriched RNAs in the mouse hippocampus. We called it Hippo-ATESC (Automatic Texture Extraction from the Hippocampal region using Soft Computing). Bioinformatic validation showed that the Hippo-ATESC is very efficient in the recognition of RNAs which are manually identified by expert curators as neuropil-enriched on the same image series. Moreover, we show that our method can also highlight genes revealed by microdissection-based methods but missed by human visual inspection. We experimentally validated our approach by identifying a non-coding transcript enriched in mouse synaptosomes. The code is freely available on the web at http://ibislab.ce.unipr.it/software/hippo/.


Assuntos
Hipocampo/metabolismo , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Neurópilo/metabolismo , RNA Mensageiro/análise , Software , Algoritmos , Animais , Atlas como Assunto , Perfilação da Expressão Gênica , Hipocampo/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Hibridização In Situ , Internet , Camundongos , Neurópilo/ultraestrutura , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...