Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(3): e0022323, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38323817

RESUMO

The protection afforded by acellular pertussis vaccines wanes over time, and there is a need to develop improved vaccine formulations. Options to improve the vaccines involve the utilization of different adjuvants and administration via different routes. While intramuscular (IM) vaccination provides a robust systemic immune response, intranasal (IN) vaccination theoretically induces a localized immune response within the nasal cavity. In the case of a Bordetella pertussis infection, IN vaccination results in an immune response that is similar to natural infection, which provides the longest duration of protection. Current acellular formulations utilize an alum adjuvant, and antibody levels wane over time. To overcome the current limitations with the acellular vaccine, we incorporated a novel TLR4 agonist, BECC438b, into both IM and IN acellular formulations to determine its ability to protect against infection in a murine airway challenge model. Following immunization and challenge, we observed that DTaP + BECC438b reduced bacterial burden within the lung and trachea for both administration routes when compared with mock-vaccinated and challenged (MVC) mice. Interestingly, IN administration of DTaP + BECC438b induced a Th1-polarized immune response, while IM vaccination polarized toward a Th2 immune response. RNA sequencing analysis of the lung demonstrated that DTaP + BECC438b activates biological pathways similar to natural infection. Additionally, IN administration of DTaP + BECC438b activated the expression of genes involved in a multitude of pathways associated with the immune system. Overall, these data suggest that BECC438b adjuvant and the IN vaccination route can impact efficacy and responses of pertussis vaccines in pre-clinical mouse models.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Coqueluche , Animais , Camundongos , Coqueluche/prevenção & controle , Receptor 4 Toll-Like , Vacina contra Coqueluche , Vacina contra Difteria, Tétano e Coqueluche , Bordetella pertussis , Adjuvantes Imunológicos , Imunidade , Anticorpos Antibacterianos
2.
Vaccine ; 41(34): 5003-5017, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37407405

RESUMO

As the COVID-19 pandemic transitions into endemicity, seasonal boosters are a plausible reality across the globe. We hypothesize that intranasal vaccines can provide better protection against asymptomatic infections and more transmissible variants of SARS-CoV-2. To formulate a protective intranasal vaccine, we utilized a VLP-based platform. Hepatitis B surface antigen-based virus like particles (VLP) linked with receptor binding domain (RBD) antigen were paired with the TLR4-based agonist adjuvant, BECC 470. K18-hACE2 mice were primed and boosted at four-week intervals with either VLP-RBD-BECC or mRNA-1273. Both VLP-RBD-BECC and mRNA-1273 vaccination resulted in production of RBD-specific IgA antibodies in serum. RBD-specific IgA was also detected in the nasal wash and lung supernatants and were highest in VLP-RBD-BECC vaccinated mice. Interestingly, VLP-RBD-BECC vaccinated mice showed slightly lower levels of pre-challenge IgG responses, decreased RBD-ACE2 binding inhibition, and lower neutralizing activity in vitro than mRNA-1273 vaccinated mice. Both VLP-RBD-BECC and mRNA-1273 vaccinated mice were protected against challenge with a lethal dose of Delta variant SARS-CoV-2. Both vaccines limited viral replication and viral RNA burden in the lungs of mice. CXCL10 is a biomarker of severe SARS-CoV-2 infection and we observed both vaccines limited expression of serum and lung CXCL10. Strikingly, VLP-RBD-BECC when administered intranasally, limited lung inflammation at early timepoints that mRNA-1273 vaccination did not. VLP-RBD-BECC immunization elicited antibodies that do recognize SARS-CoV-2 Omicron variant. However, VLP-RBD-BECC immunized mice were protected from Omicron challenge with low viral burden. Conversely, mRNA-1273 immunized mice had low to no detectable virus in the lungs at day 2. Together, these data suggest that VLP-based vaccines paired with BECC adjuvant can be used to induce protective mucosal and systemic responses against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Vacina de mRNA-1273 contra 2019-nCoV , Pandemias , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Imunoglobulina A , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
3.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36610932

RESUMO

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Epitopos/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , Soroterapia para COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos Transgênicos
4.
iScience ; 25(10): 105038, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36068847

RESUMO

Severe outcomes from SARS-CoV-2 infection are highly associated with preexisting comorbid conditions like hypertension, diabetes, and obesity. We utilized the diet-induced obesity (DIO) model of metabolic dysfunction in K18-hACE2 transgenic mice to model obesity as a COVID-19 comorbidity. Female DIO, but not male DIO mice challenged with SARS-CoV-2 were observed to have shortened time to morbidity compared to controls. Increased susceptibility to SARS-CoV-2 in female DIO was associated with increased viral RNA burden and interferon production compared to males. Transcriptomic analysis of the lungs from all mouse cohorts revealed sex- and DIO-associated differential gene expression profiles. Male DIO mice after challenge had decreased expression of antibody-related genes compared to controls, suggesting antibody producing cell localization in the lung. Collectively, this study establishes a preclinical comorbidity model of COVID-19 in mice where we observed sex- and diet-specific responses that begin explaining the effects of obesity and metabolic disease on COVID-19 pathology.

5.
Front Immunol ; 13: 948431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091051

RESUMO

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Cavalos , Humanos , Imunização Passiva , Melfalan , Camundongos , Pandemias , SARS-CoV-2/genética , gama-Globulinas
6.
mSphere ; 7(4): e0024322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35968964

RESUMO

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Compostos de Alúmen , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Emulsões , Antígenos de Superfície da Hepatite B/genética , Humanos , Melfalan , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , RNA Mensageiro , RNA Viral , SARS-CoV-2 , Esqualeno , Vacinas Sintéticas , Água , gama-Globulinas , Vacinas de mRNA
7.
PLoS One ; 17(8): e0273430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36037222

RESUMO

The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.


Assuntos
COVID-19 , Pneumonia , Animais , Antivirais , COVID-19/genética , Modelos Animais de Doenças , Humanos , Interferons , Melfalan , Camundongos , Camundongos Transgênicos , Pandemias , SARS-CoV-2 , gama-Globulinas
8.
Vaccine ; 40(35): 5229-5240, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35927132

RESUMO

Bordetella pertussis is the causative agent of whooping cough (pertussis), a severe respiratory disease that can be fatal, particularly in infants. Despite high vaccine coverage, pertussis remains a problem because the currently used DTaP and Tdap vaccines do not completely prevent infection or transmission. It is well established that the alum adjuvant is a potential weakness of the acellular vaccines because the immunity provided by it is short-term. We aimed to evaluate the potential of CpG 1018® adjuvant to improve antibody responses and enhance protection against B. pertussis challenge in a murine model. A titrated range of Tdap vaccine doses were evaluated in order to best identify the adjuvant capability of CpG 1018. Antibody responses to pertussis toxin (PT), filamentous hemagglutinin (FHA), or the whole bacterium were increased due to the inclusion of CpG 1018. In B. pertussis intranasal challenge studies, we observed improved protection and bacterial clearance from the lower respiratory tract due to adding CpG 1018 to 1/20th the human dose of Tdap. Further, we determined that Tdap and Tdap + CpG 1018 were both capable of facilitating clearance of strains that do not express pertactin (PRN-), which are rising in prevalence. Functional phenotyping of antibodies revealed that the inclusion of CpG 1018 induced more bacterial opsonization and antibodies of the Th1 phenotype (IgG2a and IgG2b). This study demonstrates the potential of adding CpG 1018 to Tdap to improve immunogenicity and protection against B. pertussis compared to the conventional, alum-only adjuvanted Tdap vaccine.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Coqueluche , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Formação de Anticorpos , Bordetella pertussis , Humanos , Imunoglobulina G , Lactente , Camundongos , Vacina contra Coqueluche , Coqueluche/prevenção & controle
9.
NPJ Vaccines ; 7(1): 36, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288576

RESUMO

SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM®). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.

10.
J Virol ; 96(6): e0218421, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080423

RESUMO

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.


Assuntos
COVID-19/terapia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Humanos , Imunização Passiva , Melfalan , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , gama-Globulinas , Soroterapia para COVID-19
12.
Infect Immun ; 89(12): e0034621, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34516235

RESUMO

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage and intranasal vaccination of aP in B. pertussis challenged rats over a 9-day infection was compared to intramuscular wP (IM-wP)- and IM-aP-immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in the production of anti-B. pertussis IgG antibody titers similar to IM-wP- and IM-aP-vaccinated controls postchallenge. IN-aP also induced anti-B. pertussis IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against B. pertussis-induced cough, whereas OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both intranasal and oral gavage administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock-vaccinated challenge rats. The data presented in this study suggest that mucosal vaccination with aP can induce a mucosal immune response and provide protection against B. pertussis challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.


Assuntos
Bordetella pertussis/imunologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Imunidade nas Mucosas , Coqueluche/prevenção & controle , Animais , Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Ratos , Ratos Sprague-Dawley , Coqueluche/imunologia
13.
medRxiv ; 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34426815

RESUMO

The SARS-CoV-2 pandemic has affected all types of global communities. Differences in urban and rural environments have led to varying levels of transmission within these subsets of the population. To fully understand the prevalence and impact of SARS-CoV-2 it is critical to survey both types of community. This study establishes the prevalence of SARS-CoV-2 in a rural community: Montgomery, West Virginia. Approximately 10% of participants exhibited serological or PCR-based results indicating exposure to SARS-CoV-2 within 6 months of the sampling date. Quantitative analysis of IgG levels against SARS-CoV-2 receptor binding domain (RBD) was used to stratify individuals based on antibody response to SARS-CoV-2. A significant negative correlation between date of exposure and degree of anti-SARS-CoV-2 RBD IgG (R 2 = 0.9006) was discovered in addition to a correlation between neutralizing anti-SARS-CoV-2 antibodies (R 2 = 0.8880) and days post exposure. Participants were confirmed to have normal immunogenic profiles by determining serum reactivity B. pertussis antigens commonly used in standardized vaccines. No significant associations were determined between anti-SARS-CoV-2 RBD IgG and age or biological sex. Reporting of viral-like illness symptoms was similar in SARS-CoV-2 exposed participants greater than 30 years old (100% reporting symptoms 30-60 years old, 75% reporting symptoms >60 years old) in contrast to participants under 30 years old (25% reporting symptoms). Overall, this axnalysis of a rural population provides important information about the SARS-CoV-2 pandemic in small rural communities. The study also underscores the fact that prior infection with SARS-CoV-2 results in antibody responses that wane over time which highlights the need for vaccine mediated protection in the absence of lasting protection.

14.
Infect Immun ; 89(12): e0030421, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34125597

RESUMO

Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.


Assuntos
Bordetella pertussis/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Coqueluche/etiologia , Animais , Biomarcadores , Bordetella pertussis/patogenicidade , Modelos Animais de Doenças , Ratos , Coqueluche/metabolismo , Coqueluche/patologia
15.
bioRxiv ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972945

RESUMO

SARS-CoV-2 variants of concern (VoCs) are impacting responses to the COVID-19 pandemic. Here we present a comparison of the SARS-CoV-2 USA-WA1/2020 (WA-1) strain with B.1.1.7 and B.1.351 VoCs and identify significant differences in viral propagation in vitro and pathogenicity in vivo using K18-hACE2 transgenic mice. Passive immunization with plasma from an early pandemic SARS-CoV-2 patient resulted in significant differences in the outcome of VoC-infected mice. WA-1-infected mice were protected by plasma, B.1.1.7-infected mice were partially protected, and B.1.351-infected mice were not protected. Serological correlates of disease were different between VoC-infected mice, with B.1.351 triggering significantly altered cytokine profiles than other strains. In this study, we defined infectivity and immune responses triggered by VoCs and observed that early 2020 SARS-CoV-2 human immune plasma was insufficient to protect against challenge with B.1.1.7 and B.1.351 in the mouse model.

16.
mSphere ; 6(1)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472985

RESUMO

The SARS-CoV-2 pandemic is impacting the global population. This study was designed to assess the interplay of antibodies with the cytokine response in SARS-CoV-2 patients. We demonstrate that significant levels of anti-SARS-CoV-2 antibody to receptor binding domain (RBD), nucleocapsid, and spike S1 subunit of SARS-CoV-2 develop over the first 10 to 20 days of infection. The majority of patients produced antibodies against all three antigens (219/255 SARS-CoV-2+ patient specimens, 86%), suggesting a broad response to viral proteins. Antibody levels to SARS-CoV-2 antigens were different based on patient mortality, sex, blood type, and age. Analyses of these findings may help explain variation in immunity between these populations. To better understand the systemic immune response, we analyzed the levels of 20 cytokines by SARS-CoV-2 patients throughout infection. Cytokine analysis of SARS-CoV-2+ patients exhibited increases in proinflammatory markers (interleukin 6 [IL-6], IL-8, IL-18, and gamma interferon [IFN-γ]) and chemotactic markers (IP-10 and eotaxin) relative to healthy individuals. Patients who succumbed to infection produced decreased IL-2, IL-4, IL-12, RANTES, tumor necrosis factor alpha (TNF-α), GRO-α, and MIP-1α relative to patients who survived infection. We also observed that the chemokine CXCL13 was particularly elevated in patients who succumbed to infection. CXCL13 is involved in B cell activation, germinal center development, and antibody maturation, and we observed that CXCL13 levels in blood trended with anti-SARS-CoV-2 antibody levels. Furthermore, patients who succumbed to infection produced high CXCL13 and had a higher ratio of nucleocapsid to RBD antibodies. This study provides insights into SARS-CoV-2 immunity implicating the magnitude and specificity of response in relation to patient outcomes.IMPORTANCE The SARS-CoV-2 pandemic is continuing to impact the global population, and knowledge of the immune response to COVID-19 is still developing. This study assesses the interplay of different parts of the immune system during COVID-19 disease. We demonstrate that COVID-19 patients produce antibodies to three proteins of the COVID-19 virus (SARS-CoV-2) and identify many other immunological proteins that are involved during infection. The data suggest that one of these proteins (CXCL13) may be a novel biomarker for severe COVID-19 that can be readily measured in blood. This information combined with our broad-scale analysis of immune activity during COVID-19 provides new information on the immunological response throughout the course of disease and identifies a novel potential marker for assessing disease severity.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Quimiocina CXCL13/sangue , Citocinas/análise , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , COVID-19/imunologia , COVID-19/mortalidade , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
17.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33318136

RESUMO

Bordetella pertussis colonizes the respiratory mucosa of humans, inducing an immune response seeded in the respiratory tract. An individual, once convalescent, exhibits long-term immunity to the pathogen. Current acellular pertussis (aP) vaccines do not induce the long-term immune response observed after natural infection in humans. In this study, we evaluated the durability of protection from intranasal (i.n.) pertussis vaccines in mice. Mice that convalesced from B. pertussis infection served as a control group. Mice were immunized with a mock vaccine (phosphate-buffered saline [PBS]), aP only, or an aP base vaccine combined with one of the following adjuvants: alum, curdlan, or purified whole glucan particles (IRI-1501). We utilized two study designs: short term (challenged 35 days after priming vaccination) and long term (challenged 6 months after boost). The short-term study demonstrated that immunization with i.n. vaccine candidates decreased the bacterial burden in the respiratory tract, reduced markers of inflammation, and induced significant serum and lung antibody titers. In the long-term study, protection from bacterial challenge mirrored the results observed in the short-term challenge study. Immunization with pertussis antigens alone was surprisingly protective in both models; however, the alum and IRI-1501 adjuvants induced significant B. pertussis-specific IgG antibodies in both the serum and lung and increased numbers of anti-B. pertussis IgG-secreting plasma cells in the bone marrow. Our data indicate that humoral responses induced by the i.n. vaccines correlated with protection, suggesting that long-term antibody responses can be protective.


Assuntos
Anticorpos Antibacterianos/sangue , Bordetella pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Modelos Animais de Doenças , Humanos , Imunização , Camundongos , Fatores de Tempo , Vacinação
18.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33199354

RESUMO

Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe pulmonary infections associated with high morbidity and mortality in immunocompromised patients. The development of a vaccine against P. aeruginosa could help prevent infections caused by this highly antibiotic-resistant microorganism. We propose that identifying the vaccine-induced correlates of protection against P. aeruginosa will facilitate the development of a vaccine against this pathogen. In this study, we investigated the mechanistic correlates of protection of a curdlan-adjuvanted P. aeruginosa whole-cell vaccine (WCV) delivered intranasally. The WCV significantly decreased bacterial loads in the respiratory tract after intranasal P. aeruginosa challenge and raised antigen-specific antibody titers. To study the role of B and T cells during vaccination, anti-CD4, -CD8, and -CD20 depletions were performed prior to WCV vaccination and boosting. The depletion of CD4+, CD8+, or CD20+ cells had no impact on the bacterial burden in mock-vaccinated animals. However, depletion of CD20+ B cells, but not CD8+ or CD4+ T cells, led to the loss of vaccine-mediated bacterial clearance. Also, passive immunization with serum from WCV group mice alone protected naive mice against P. aeruginosa, supporting the role of antibodies in clearing P. aeruginosa We observed that in the absence of T cell-dependent antibody production, mice vaccinated with the WCV were still able to reduce bacterial loads. Our results collectively highlight the importance of the humoral immune response for protection against P. aeruginosa and suggest that the production of T cell-independent antibodies may be sufficient for bacterial clearance induced by whole-cell P. aeruginosa vaccination.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/administração & dosagem , Vacinas contra Pseudomonas/imunologia , Animais , Humanos , Imunização , Camundongos , Modelos Animais , Pneumonia Bacteriana/fisiopatologia , Infecções por Pseudomonas/fisiopatologia , Vacinação
19.
Vaccines (Basel) ; 8(4)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153066

RESUMO

Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and systemic immune responses following infection. These studies showed that intranasal vaccination with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the respective pathogen. However, there were unique changes in the cytokines produced, cells recruited, and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind the target pathogen, but linear regression and principal component analysis revealed that protection from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α, KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung. Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can be used for further development of both B. pertussis and P. aeruginosa vaccines.

20.
Front Immunol ; 10: 2497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708925

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia.


Assuntos
Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Vacinas Conjugadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hemocianinas/química , Hemocianinas/imunologia , Humanos , Imunidade nas Mucosas , Imunização , Memória de Curto Prazo , Camundongos , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Vacinas contra Pseudomonas/administração & dosagem , Proteínas Recombinantes , Vacinas Conjugadas/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...