Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nucleic Acid Ther ; 34(1): 18-25, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227794

RESUMO

The triantennary N-acetylgalactosamine (GalNAc3) cluster has demonstrated the utility of receptor-mediated uptake of ligand-conjugated antisense drugs targeting RNA expressed by hepatocytes. GalNAc3-conjugated 2'-O-methoxyethyl (2'MOE) modified antisense oligonucleotides (ASOs) have demonstrated a higher potency than the unconjugated form to support lower doses for an equivalent pharmacological effect. We utilized the Ionis integrated safety database to compare four GalNAc3-conjugated and four same-sequence unconjugated 2'MOE ASOs. This assessment evaluated data from eight randomized placebo-controlled dose-ranging phase 1 studies involving 195 healthy volunteers (79 GalNAc3 ASO, 24 placebo; 71 ASO, 21 placebo). No safety signals were identified by the incidence of abnormal threshold values in clinical laboratory tests for either ASO group. However, there was a significant increase in mean alanine transaminase levels compared with placebo in the upper dose range of the unconjugated 2'MOE ASO group. The mean percentage of subcutaneous injections leading to local cutaneous reaction was 30-fold lower in the GalNAc3-conjugated ASO group compared with the unconjugated ASO group (0.9% vs. 28.6%), with no incidence of flu-like reactions (0.0% vs. 0.7%). Three subjects (4.2%) in the unconjugated ASO group discontinued dosing. An improvement in the overall safety and tolerability profile of GalNAc3-conjugated 2'MOE ASOs is evident in this comparison of short-term clinical data in healthy volunteers.


Assuntos
Hepatócitos , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , RNA , Acetilgalactosamina
2.
Nucleic Acid Ther ; 33(1): 72-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454263

RESUMO

Receptor-mediated delivery of an antisense oligonucleotide (ASO) using the ligand-conjugated antisense technology is establishing a new benchmark for antisense therapeutics. The triantennary N-acetylgalactosamine (GalNAc3) cluster is the first conjugated ligand to yield a marked increase in ASO potency for RNA targets expressed by hepatocytes, compared to the unconjugated form. In this study, we present an integrated safety assessment of data available from randomized, placebo-controlled, phase 2 studies for six GalNAc3-conjugated 2'-O-methoxyethyl (2'MOE)-modified ASOs. The total study population included 642 participants (130 placebo; 512 ASO) with up to 1 year of exposure. The primary measures were the incidence of signals from standardized laboratory tests and the mean test results over time. The GalNAc3-conjugated ASOs were well tolerated with no class effect identified across all doses tested compared to placebo. These results extend prior observations from phase 1 studies, now with treatment up to 1 year.


Assuntos
Hepatócitos , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Ligantes , Oligonucleotídeos/farmacologia , RNA/farmacologia
3.
J Clin Pharmacol ; 63(1): 21-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801818

RESUMO

The pharmacokinetics (PK) of 2'-O-methoxyethyl and phosphorothioate antisense oligonucleotides (ASOs), with or without N-acetyl galactosamine conjugation, have been well characterized following subcutaneous or intravenous drug administration. However, the effect of organ impairment on ASO PK, primarily hepatic or renal impairment, has not yet been reported. ASOs distribute extensively to the liver and kidneys, where they are metabolized slowly by endo- and exonucleases, with minimal renal excretion as parent drug (<1%-3%). This short review evaluated the effect of organ impairment on ASO PK using 3 case studies: (1) a phase 1 renal impairment study evaluating a N-acetyl galactosamine-conjugated ASO in healthy study participants and study participants with moderate renal impairment, (2) a phase 2 study evaluating an unconjugated ASO in patients with end-stage renal disease; and (3) a phase 3 study evaluating an unconjugated ASO, which included patients with mild hepatic or renal impairment. Results showed that patients with end-stage renal disease had a mild increase (≈34%) in total plasma exposure, whereas mild or moderate renal impairment showed no effect on plasma PK. The effect of hepatic impairment on ASO PK could not be fully evaluated due to lack of data in moderate and severe hepatic impairment study participants. Nonetheless, available data suggest that mild hepatic impairment had no effect on ASO exposure.


Assuntos
Falência Renal Crônica , Oligonucleotídeos Antissenso , Humanos , Galactosamina/farmacologia , Fígado , Oligonucleotídeos Fosforotioatos/farmacocinética
4.
Nat Commun ; 13(1): 1096, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232994

RESUMO

Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis.


Assuntos
Tecido Adiposo Marrom , Resistência à Insulina , Metionina Adenosiltransferase , Obesidade , Oligonucleotídeos Antissenso , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Fígado/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacologia
5.
Kidney Int Rep ; 7(2): 200-209, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35155859

RESUMO

INTRODUCTION: Patients with end-stage renal disease (ESRD) requiring hemodialysis (HD) have an increased risk of thrombotic events and bleeding. Antisense reduction of factor XI (FXI) with IONIS-FXIRx is a novel strategy that may safely reduce the risk of thrombotic events. METHODS: This multicenter study enrolled 49 patients receiving HD in 2 parts. First, 6 participants (pharmacokinetics [PK] cohort) received 1 open-label 300 mg dose of IONIS-FXIRx both before and after HD. Subsequently, 43 participants were treated in a double-blind, randomized design with 200 mg or 300 mg IONIS-FXIRx or placebo for 12 weeks. The PK, pharmacodynamics (PD), and adverse events of IONIS-FXIRx were evaluated (ClinicalTrials.gov: NCT02553889). RESULTS: The PK of IONIS-FXIRx was consistent with previous studies and similar whether injected before or after HD. No accumulation of IONIS-FXIRx was observed after repeat administration. By day 85, mean levels of FXI activity fell 56.0% in the 200 mg group, 70.7% in the 300 mg group, and 3.9% in the placebo group compared with baseline. FXI antigen levels paralleled FXI activity. Dose-dependent prolongation of activated partial thromboplastin time (aPTT) was observed, with no changes in international normalized ratio (INR). IONIS-FXIRx was not associated with drug-related serious adverse events. In the randomized phase of the study, major bleeding events occurred in 0 (0.0%; 200 mg), 1 (6.7%; 300 mg), and 1 (7.7%; placebo) patients and were not considered related to treatment. CONCLUSION: IONIS-FXIRx reduced FXI activity in patients with ESRD receiving HD. Further studies are needed to determine the benefit-risk profile of FXI as a therapeutic target for patients who require HD.

6.
Nucleic Acid Ther ; 31(6): 417-426, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242101

RESUMO

The development process of antisense oligonucleotides (ASOs) as therapeutic agents in humans has advanced through the implementation of chemical compound modifications as well as increasingly sophisticated toxicological preclinical screening techniques. The Ionis Integrated Safety Database was utilized to determine if advances in ASO screening and clinical lead identification methods have improved the tolerability profiles of 2'-O-methoxyethyl (2'MOE)-modified ASOs as a class, relative to the first 2'MOE ASO approved for use in humans, mipomersen. Tolerability was assessed by the incidence and percentage of subcutaneous doses leading to adverse events at the injection site or flu-like reactions (FLRs), as well as by the incidence of dose discontinuations due to these events. In randomized placebo-controlled phase 1 and phase 2 trials, the incidence of each measure of tolerability was lower in the test group of 12 ASOs (713 ASO-treated subjects) compared with the reference, mipomersen (266 ASO-treated subjects); with the most marked reduction in the incidence of FLRs (0.6% vs. 9.4%). A similar reduction in the incidence of dose discontinuation due to FLRs was also observed (0.2% vs. 0.9%). When compared with mipomersen, 8 of 12 ASOs showed significant improvements in their respective mean percentage of doses leading to adverse events at the injection site, whereas 7 ASOs showed a significant improvement in mean percentage of doses leading to FLRs. These results support an overall improvement in the tolerability profile in 2'MOE ASOs that entered development after mipomersen, in parallel with advances in the drug discovery screening process as well as the gains in clinical experience during development of each ASO.


Assuntos
Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/genética
7.
CPT Pharmacometrics Syst Pharmacol ; 10(8): 890-901, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34085768

RESUMO

IONIS-FXIRX (BAY2306001) is an antisense oligonucleotide that inhibits the synthesis of coagulation factor XI (FXI) and has been investigated in healthy volunteers and patients with end-stage renal disease (ESRD). FXI-LICA (BAY2976217) shares the same RNA sequence as IONIS-FXIRX but contains a GalNAc-conjugation that facilitates asialoglycoprotein receptor (ASGPR)-mediated uptake into hepatocytes. FXI-LICA has been studied in healthy volunteers and is currently investigated in patients with ESRD on hemodialysis. We present a model-informed bridging approach that facilitates the extrapolation of the dose-exposure-FXI relationship from IONIS-FXIRX to FXI-LICA in patients with ESRD and, thus, supports the selection of FX-LICA doses being investigated in patients with ESRD. A two-compartment pharmacokinetic (PK) model, with mixed first- and zero-order subcutaneous absorption and first-order elimination, was combined with an indirect response model for the inhibitory effect on the FXI synthesis rate via an effect compartment. This PK/pharmacodynamic model adequately described the median trends, as well as the interindividual variabilities for plasma drug concentration and FXI activity in healthy volunteers of IONIS-FXIRX and FXI-LICA, and in patients with ESRD of IONIS-FXIRX . The model was then used to predict dose-dependent steady-state FXI activity following repeat once-monthly doses of FXI-LICA in a virtual ESRD patient population. Under the assumption of similar ASGPR expression in patients with ESRD and healthy volunteers, doses of 40 mg, 80 mg, and 120 mg FXI-LICA are expected to cover the target range of clinical interest for steady-state FXI activity in the phase IIb study of FXI-LICA in patients with ESRD undergoing hemodialysis.


Assuntos
Fator XI/antagonistas & inibidores , Falência Renal Crônica/terapia , Modelos Biológicos , Oligonucleotídeos Antissenso/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Diálise Renal
8.
Cancer Res ; 81(11): 2874-2887, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771899

RESUMO

Lipid metabolism rearrangements in nonalcoholic fatty liver disease (NAFLD) contribute to disease progression. NAFLD has emerged as a major risk for hepatocellular carcinoma (HCC), where metabolic reprogramming is a hallmark. Identification of metabolic drivers might reveal therapeutic targets to improve HCC treatment. Here, we investigated the contribution of transcription factors E2F1 and E2F2 to NAFLD-related HCC and their involvement in metabolic rewiring during disease progression. In mice receiving a high-fat diet (HFD) and diethylnitrosamine (DEN) administration, E2f1 and E2f2 expressions were increased in NAFLD-related HCC. In human NAFLD, E2F1 and E2F2 levels were also increased and positively correlated. E2f1 -/- and E2f2 -/- mice were resistant to DEN-HFD-induced hepatocarcinogenesis and associated lipid accumulation. Administration of DEN-HFD in E2f1 -/- and E2f2 -/- mice enhanced fatty acid oxidation (FAO) and increased expression of Cpt2, an enzyme essential for FAO, whose downregulation is linked to NAFLD-related hepatocarcinogenesis. These results were recapitulated following E2f2 knockdown in liver, and overexpression of E2f2 elicited opposing effects. E2F2 binding to the Cpt2 promoter was enhanced in DEN-HFD-administered mouse livers compared with controls, implying a direct role for E2F2 in transcriptional repression. In human HCC, E2F1 and E2F2 expressions inversely correlated with CPT2 expression. Collectively, these results indicate that activation of the E2F1-E2F2-CPT2 axis provides a lipid-rich environment required for hepatocarcinogenesis. SIGNIFICANCE: These findings identify E2F1 and E2F2 transcription factors as metabolic drivers of hepatocellular carcinoma, where deletion of just one is sufficient to prevent disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2874/F1.large.jpg.


Assuntos
Carcinoma Hepatocelular/patologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/metabolismo , Lipídeos/análise , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinógenos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/genética , Regulação da Expressão Gênica , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Regiões Promotoras Genéticas
9.
Cell Metab ; 32(4): 654-664.e5, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32882164

RESUMO

Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance (HIR); however, the key lipid species and molecular mechanisms linking these conditions are widely debated. We developed a subcellular fractionation method to quantify diacylglycerol (DAG) stereoisomers and ceramides in the endoplasmic reticulum (ER), mitochondria, plasma membrane (PM), lipid droplets, and cytosol. Acute knockdown (KD) of diacylglycerol acyltransferase-2 in liver induced HIR in rats. This was due to PM sn-1,2-DAG accumulation, which promoted PKCϵ activation and insulin receptor kinase (IRK)-T1160 phosphorylation, resulting in decreased IRK-Y1162 phosphorylation. Liver PM sn-1,2-DAG content and IRK-T1160 phosphorylation were also higher in humans with HIR. In rats, liver-specific PKCϵ KD ameliorated high-fat diet-induced HIR by lowering IRK-T1160 phosphorylation, while liver-specific overexpression of constitutively active PKCϵ-induced HIR by promoting IRK-T1160 phosphorylation. These data identify PM sn-1,2-DAGs as the key pool of lipids that activate PKCϵ and that hepatic PKCϵ is both necessary and sufficient in mediating HIR.


Assuntos
Membrana Celular/química , Diglicerídeos/metabolismo , Fígado/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Membrana Celular/metabolismo , Diglicerídeos/química , Humanos , Resistência à Insulina , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo
10.
Lancet Gastroenterol Hepatol ; 5(9): 829-838, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553151

RESUMO

BACKGROUND: Diacylglycerol-O-acyltransferase 2 (DGAT2) is one of two enzyme isoforms that catalyse the final step in the synthesis of triglycerides. IONIS-DGAT2Rx is an antisense oligonucleotide inhibitor of DGAT2 that is under clinical investigation for the treatment of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). The aim of this trial was to examine the safety, tolerability, and efficacy of IONIS-DGAT2Rx versus placebo in reducing liver fat in patients with type 2 diabetes and NAFLD. METHODS: This double-blind, randomised, placebo-controlled, phase 2 study consisted of a 2-week screening period, a run-in period of up to 4 weeks, a 13-week treatment period of once-weekly dosing, and a 13-week post-treatment follow-up period. The study was done at 16 clinical research sites in Canada, Poland, and Hungary. Eligible participants were aged 18-75 years, had a body-mass index at screening between 27 kg/m2 and 39 kg/m2, haemoglobin A1c (HbA1c) levels from 7·3% to 9·5%, and liver fat content 10% or greater before randomisation, and agreed to maintain a stable diet and exercise routine throughout the study. Enrolled participants were stratified on the basis of liver fat content during the run-in period (<20% or ≥20%) and then centrally randomised (2:1) to receive once weekly subcutaneous injection of 250 mg IONIS-DGAT2Rx or placebo for 13 weeks. Participants, investigators, funder personnel, and the clinical research organisation staff, including central readers of MRI scans, were all masked to treatment identity. The primary endpoints were the safety, tolerability, and pharmacodynamic effect of IONIS-DGAT2Rx on hepatic steatosis, according to absolute reduction from baseline in liver fat percentage as quantified by MRI-estimated proton density fat fraction and assessed in the per-protocol population. Pharmacodynamic performance was determined in the per-protocol population by the change in liver fat content from baseline to 2 weeks after the last dose. The per-protocol population included all randomised participants who received at least ten doses of study drug, with the first four doses administered in the first 5 weeks, did not miss more than three consecutive weekly doses, and who had no protocol deviations that might affect efficacy. All randomised participants who received at least one dose of study drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT03334214. FINDINGS: Between Nov 3, 2017, and Nov 28, 2018, we screened 173 people for eligibility. 44 were enrolled and randomly assigned to receive either IONIS-DGAT2Rx (29 participants) or placebo (15 participants). After 13 weeks of treatment, the mean absolute reduction from baseline was -5·2% (SD 5·4) in the IONIS-DGAT2Rx group compared with -0·6% (6·1) in the placebo group (treatment difference -4·2%, 95% CI -7·8 to -0·5, p=0·026). Reductions in liver fat were not accompanied by hyperlipidaemia, elevations in serum aminotransferases or plasma glucose, changes in bodyweight, or gastrointestinal side-effects compared with placebo. Six serious adverse events occurred in four patients treated with IONIS-DGAT2Rx. No serious adverse events were reported in the placebo group. One of four patients reported three serious adverse events: acute exacerbation of chronic obstructive pulmonary disease, cardiac arrest, and ischaemic cerebral infarction, each considered severe and not related to study drug. Three of four patients reported one serious adverse event of increased blood triglycerides (severe, unrelated to study drug), deep-vein thrombosis (severe, unlikely to be related to study drug), and acute pancreatitis (mild, unrelated to study drug). INTERPRETATION: Our results suggest that DGAT2 antisense inhibition could be a safe and efficacious strategy for treatment of NAFLD and support further investigation in patients with biopsy-proven NASH. Based on the pharmacological target, the response to treatment observed in this study population could extend to the broader population of patients with NAFLD. FUNDING: Ionis Pharmaceuticals.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oligonucleotídeos Antissenso/antagonistas & inibidores , Idoso , Índice de Massa Corporal , Canadá/epidemiologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diacilglicerol O-Aciltransferase/administração & dosagem , Diacilglicerol O-Aciltransferase/efeitos adversos , Diacilglicerol O-Aciltransferase/farmacologia , Método Duplo-Cego , Tolerância a Medicamentos , Feminino , Humanos , Hungria/epidemiologia , Injeções Subcutâneas , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacologia , Placebos/administração & dosagem , Polônia/epidemiologia , Segurança , Resultado do Tratamento
11.
Mol Metab ; 22: 49-61, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30772256

RESUMO

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD. METHODS: We examined the effects of liver-targeted GalNAc3-conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation. RESULTS: ASO-mediated silencing of Pnpla3 reduced liver steatosis (p = 0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p = 0.018) and fibrosis stage (p = 0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p = 0.026) and Timp2 (p = 0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration. CONCLUSION: This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.


Assuntos
Lipase/genética , Cirrose Hepática/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Oligonucleotídeos Antissenso/genética , Fosfolipases A2 Independentes de Cálcio/genética , Animais , Feminino , Inativação Gênica , Humanos , Lipase/metabolismo , Cirrose Hepática/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo
12.
Diabetes Care ; 42(4): 585-593, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30765435

RESUMO

OBJECTIVE: To evaluate the safety and efficacy of IONIS-GCGRRx, a 2'-O-methoxyethyl antisense oligonucleotide targeting the glucagon receptor (GCGR), and the underlying mechanism of liver transaminase increases in patients with type 2 diabetes on stable metformin therapy. RESEARCH DESIGN AND METHODS: In three phase 2, randomized, double-blind studies, patients with type 2 diabetes on metformin received weekly subcutaneous injections of IONIS-GCGRRx (50-200 mg) or placebo for 13 or 26 weeks. RESULTS: Significant reductions in HbA1c were observed after IONIS-GCGRRx treatment versus placebo at week 14 (-2.0% 200 mg, -1.4% 100 mg, -0.3% placebo; P < 0.001) or week 27 (-1.6% 75 mg, -0.9% 50 mg, -0.2% placebo; P < 0.001). Dose-dependent increases in transaminases were observed with IONIS-GCGRRx, which were attenuated at lower doses and remained mostly within the normal reference range at the 50-mg dose. There were no other significant safety observations and no symptomatic hypoglycemia or clinically relevant changes in blood pressure, LDL cholesterol, or other vital signs. At week 14, IONIS-GCGRRx 100 mg did not significantly affect mean hepatic glycogen content compared with placebo (15.1 vs. -20.2 mmol/L, respectively; P = 0.093) but significantly increased hepatic lipid content (4.2 vs. -2.7%, respectively; P = 0.005) in the presence of transaminase increases. CONCLUSIONS: IONIS-GCGRRx is a potent inhibitor of hepatic glucagon receptor expression with a potential to improve glycemic control at low weekly doses in combination with metformin. Significant reductions in HbA1c occurred across the full-dose range tested, with minimal transaminase elevations at lower doses. Furthermore, novel results suggest that despite inhibition of glycogenolysis after GCGR antagonism, IONIS-GCGRRx did not increase hepatic glycogen content.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicogênio Hepático/metabolismo , Metformina/uso terapêutico , Adolescente , Adulto , Idoso , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Método Duplo-Cego , Humanos , Glicogênio Hepático/análise , Pessoa de Meia-Idade , Receptores de Glucagon/metabolismo , Adulto Jovem
13.
Endocrinology ; 160(1): 205-219, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445425

RESUMO

The increased hepatic gluconeogenesis in type 2 diabetes mellitus has often been ascribed to increased transcription of phosphoenolpyruvate carboxykinase 1, cystolic form (PEPCK1), although recent evidence has questioned this attribution. To assess the metabolic role of PEPCK1, we treated regular chow fed and high-fat fed (HFF) male Sprague-Dawley rats with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) against PEPCK1 and compared them with control ASO-treated rats. PEPCK1 ASO effectively decreased PEPCK1 expression in the liver and white adipose tissue. In chow fed rats, PEPCK1 ASO did not alter adiposity, plasma glucose, or insulin. In contrast, PEPCK1 ASO decreased the white adipose tissue mass in HFF rats but without altering basal rates of lipolysis, de novo lipogenesis, or glyceroneogenesis in vivo. Despite the protection from adiposity, hepatic insulin sensitivity was impaired in HFF PEPCK1 ASO-treated rats. PEPCK1 ASO worsened hepatic steatosis, although without additional impairments in hepatic insulin signaling or activation of inflammatory signals in the liver. Instead, the development of hepatic insulin resistance and the decrease in hepatic glycogen synthesis during a hyperglycemic clamp was attributed to a decrease in hepatic glucokinase (GCK) expression and decreased synthesis of glycogen via the direct pathway. The decrease in GCK expression was associated with increased expression of activating transcription factor 3, a negative regulator of GCK transcription. These studies have demonstrated that PEPCK1 is integral to coordinating cellular metabolism in the liver and adipose tissue, although it does not directly effect hepatic glucose production or adipose glyceroneogenesis.


Assuntos
Adiposidade , Diabetes Mellitus Tipo 2/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glicogênio Hepático/biossíntese , Fígado/metabolismo , Oligonucleotídeos Antissenso/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Glucoquinase/genética , Glucoquinase/metabolismo , Humanos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Diabetologia ; 61(6): 1435-1446, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29497783

RESUMO

AIMS/HYPOTHESIS: Targeting regulators of adipose tissue lipoprotein lipase could enhance adipose lipid clearance, prevent ectopic lipid accumulation and consequently ameliorate insulin resistance and type 2 diabetes. Angiopoietin-like 8 (ANGPTL8) is an insulin-regulated lipoprotein lipase inhibitor strongly expressed in murine adipose tissue. However, Angptl8 knockout mice do not have improved insulin resistance. We hypothesised that pharmacological inhibition, using a second-generation antisense oligonucleotide (ASO) against Angptl8 in adult high-fat-fed rodents, would prevent ectopic lipid accumulation and insulin resistance by promoting adipose lipid uptake. METHODS: ANGPTL8 expression was assessed by quantitative PCR in omental adipose tissue of bariatric surgery patients. High-fat-fed Sprague Dawley rats and C57BL/6 mice were treated with ASO against Angptl8 and insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamps in rats and glucose tolerance tests in mice. Factors mediating lipid-induced hepatic insulin resistance were assessed, including lipid content, protein kinase Cε (PKCε) activation and insulin-stimulated Akt phosphorylation. Rat adipose lipid uptake was assessed by mixed meal tolerance tests. Murine energy balance was assessed by indirect calorimetry. RESULTS: Omental fat ANGPTL8 mRNA expression is higher in obese individuals with fatty liver and insulin resistance compared with BMI-matched insulin-sensitive individuals. Angptl8 ASO prevented hepatic steatosis, PKCε activation and hepatic insulin resistance in high-fat-fed rats. Postprandial triacylglycerol uptake in white adipose tissue was increased in Angptl8 ASO-treated rats. Angptl8 ASO protected high-fat-fed mice from glucose intolerance. Although there was no change in net energy balance, Angptl8 ASO increased fat mass in high-fat-fed mice. CONCLUSIONS/INTERPRETATION: Disinhibition of adipose tissue lipoprotein lipase is a novel therapeutic modality to enhance adipose lipid uptake and treat non-alcoholic fatty liver disease and insulin resistance. In line with this, adipose ANGPTL8 is a candidate therapeutic target for these conditions.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oligonucleotídeos Antissenso/genética , Hormônios Peptídicos/genética , Proteína 8 Semelhante a Angiopoietina , Animais , Composição Corporal , Calorimetria Indireta , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
15.
Diabetes Care ; 41(4): 807-814, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29439147

RESUMO

OBJECTIVE: To evaluate safety and efficacy of IONIS-PTP-1BRx, a second-generation 2'-O-methoxyethyl antisense inhibitor of protein tyrosine phosphatase 1B, as add-on therapy in overweight patients with type 2 diabetes inadequately controlled with metformin with or without sulfonylurea therapy. RESEARCH DESIGN AND METHODS: In this phase II, double-blind, randomized, placebo-controlled, multicenter trial, overweight and obese patients (BMI ≥27 kg/m2) with type 2 diabetes (HbA1c ≥7.5% [58 mmol/mol] and ≤10.5% [91 mmol/mol]) on a stable dose of metformin alone or with sulfonylurea were randomized 2:1 to IONIS-PTP-1BRx 200 mg (n = 62) or placebo (n = 30) once weekly for 26 weeks. RESULTS: Mean baseline HbA1c was 8.6% (70 mmol/mol) and 8.7% (72 mmol/mol) in placebo and active treatment, respectively. At week 27, IONIS-PTP-1BRx reduced mean HbA1c levels by -0.44% (-4.8 mmol/mol; P = 0.074) from baseline and improved leptin (-4.4 ng/mL; P = 0.007) and adiponectin (0.99 µg/mL; P = 0.026) levels compared with placebo. By week 36, mean HbA1c was significantly reduced (-0.69% [-7.5 mmol/mol]; P = 0.034) and accompanied by reductions in fructosamine (-33.2 µmol/L; P = 0.005) and glycated albumin (-1.6%; P = 0.031) versus placebo. Despite both treatment groups receiving similar lifestyle counseling, mean body weight significantly decreased from baseline to week 27 with IONIS-PTP-1BRx versus placebo (-2.6 kg; P = 0.002) independent of HbA1c reduction (R2 = 0.0020). No safety concerns were identified in the study. CONCLUSIONS: Compared with placebo, IONIS-PTP-1BRx treatment for 26 weeks produced prolonged reductions in HbA1c, improved medium-term glycemic parameters, reduced leptin and increased adiponectin levels, and resulted in a distinct body weight-reducing effect.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Resistência à Insulina , Obesidade/tratamento farmacológico , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Oligodesoxirribonucleotídeos/uso terapêutico , Sobrepeso/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Redução de Peso/efeitos dos fármacos , Adulto , Idoso , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Resistência à Insulina/genética , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Sobrepeso/complicações , Sobrepeso/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Compostos de Sulfonilureia/administração & dosagem , Redução de Peso/genética
16.
Nucleic Acid Ther ; 28(1): 10-22, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29185862

RESUMO

Systemically administered 2'-O-methoxyethyl (2'MOE) antisense oligonucleotides (ASOs) accumulate in the kidney and metabolites are cleared in urine. The effects of eleven 2'MOE ASOs on renal function were assessed in 2,435 patients from 32 phase 2 and phase 3 trials. The principle analysis was on data from 28 randomized placebo-controlled trials. Mean levels of renal parameters remained within normal ranges over time across dose groups. Patient-level meta-analyses demonstrated a significant difference between placebo-treated and 2'MOE ASO-treated patients at doses >175 mg/week in the percentage and absolute change from baseline for serum creatinine and estimated glomerular filtration rate. However, these changes were not clinically significant or progressive. No dose-related effects were observed in the incidence of abnormal renal test results in the total population of patients, or subpopulation of diabetic patients or patients with renal dysfunction at baseline. The incidence of acute kidney injury [serum creatinine ≥0.3 mg/dL (26.5 µM) increases from baseline or ≥1.5 × baseline] in 2'MOE ASO-treated patients (2.4%) was not statistically different from placebo (1.7%, P = 0.411). In conclusion, in this database, encompassing 32 clinical trials and 11 different 2'MOE ASOs, we found no evidence of clinically significant renal dysfunction up to 52 weeks of randomized-controlled treatment.


Assuntos
Diabetes Mellitus/terapia , Hiperlipidemias/terapia , Obesidade/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Trombose/terapia , Adulto , Apolipoproteínas/antagonistas & inibidores , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Creatinina/sangue , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Fator XI/antagonistas & inibidores , Fator XI/genética , Fator XI/metabolismo , Feminino , Taxa de Filtração Glomerular , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Segurança do Paciente , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Trombose/genética , Trombose/metabolismo , Trombose/fisiopatologia
17.
Nucleic Acid Ther ; 27(4): 197-208, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28541820

RESUMO

Decreases in platelet (PLT) counts observed in nonhuman primates (NHPs) given 2'-O-methoxyethyl modified antisense inhibitors (2'-MOE ASOs) have been reported, but the incidence and severity of the change vary considerably between sequences, studies, and animals. This article will broadly illustrate the spectrum of effects on PLT count in NHPs. From queries of an NHP safety database representing over 102 independent 2'-MOE ASOs, from 61 studies and >2200 NHPs, two patterns of PLT changes emerged. The first is a consistent and reproducible decrease in group mean values, observed with about 30% of the compounds, in which PLT count typically remains ≥150K cells/µL. The second is a sporadic decrease in PLTs to <50K cells/µL (2%-4% incidence at doses >5 mg/kg) that is often not reproducible. In both cases, the reduction in PLT count is dose dependent and reversible. The human relevance of PLT change observed in NHPs was investigated using ISIS 404173. In a chronic NHP study (20 mg/kg/wk for 26 weeks), a gradual decrease in group mean PLT count was observed at ≥10 mg/kg/wk, which plateaued by 13 weeks generally within the normal range and was maintained through 26 weeks of treatment. However, PLT counts <50K cells/µL occurred in 1 of 16 NHP at 10 mg/kg/wk and 3 of 16 NHP at 20 mg/kg/wk. In a 26-week double-blind, placebo-controlled Phase 2 trial, 62 patients were treated with 200 mg/wk ISIS 404173 (∼3.3 mg/kg/wk) there was an increased incidence of PLT count >30% decreased compared to baseline but no incidence of PLT <75K cells/µL. Based on these data, the consistent, self-limiting PLT reduction seen in NHP may translate to humans, but these changes appear to be of limited clinical significance. However, NHPs appear to overpredict the incidence of sporadic PLT <50K cells/µL compared to humans.


Assuntos
Oligonucleotídeos Antissenso/toxicidade , Animais , Ensaios Clínicos Fase II como Assunto , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Relação Dose-Resposta a Droga , Método Duplo-Cego , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Masculino , Contagem de Plaquetas
18.
Nucleic Acid Ther ; 27(3): 121-129, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28145801

RESUMO

A thorough analysis of clinical trial data in the Ionis integrated safety database (ISDB) was performed to determine if there is a class effect on platelet numbers and function in subjects treated with 2'-O-methoxyethyl (2'MOE)-modified antisense oligonucleotides (ASOs). The Ionis ISDB includes over 2,600 human subjects treated with 16 different 2'MOE ASOs in placebo-controlled and open-label clinical trials over a range of doses up to 624 mg/week and treatment durations as long as 4.6 years. This analysis showed that there is no class generic effect on platelet numbers and no incidence of confirmed platelet levels below 50 K/µL in subjects treated with 2'MOE ASOs. Only 7 of 2,638 (0.3%) subjects treated with a 2'MOE ASO experienced a confirmed postbaseline (BSLN) platelet count between 100 and 50 K/µL. Three of sixteen 2'MOE ASOs had >10% incidence of platelet decreases >30% from BSLN, suggesting that certain sequences may associate with clinically insignificant platelet declines. Further to these results, we found no evidence that 2'MOE ASOs alter platelet function, as measured by the lack of clinically relevant bleeding in the presence or absence of other drugs that alter platelet function and/or number and by the results from trials conducted with the factor XI (FXI) ASO.


Assuntos
Plaquetas/efeitos dos fármacos , Ensaios Clínicos como Assunto/estatística & dados numéricos , Oligonucleotídeos Antissenso/efeitos adversos , Tionucleotídeos/efeitos adversos , Trombocitopenia/epidemiologia , Adulto , Idoso , Quimioterapia Combinada/efeitos adversos , Fator XI/análise , Feminino , Hemorragia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/uso terapêutico , Contagem de Plaquetas , Tionucleotídeos/administração & dosagem , Tionucleotídeos/uso terapêutico , Trombocitopenia/sangue , Trombocitopenia/induzido quimicamente , Fatores de Tempo
19.
J Pharmacokinet Pharmacodyn ; 44(3): 179-191, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132162

RESUMO

IONIS-GCGRRx (ISIS 449884) is an antisense oligonucleotide inhibitor of the glucagon receptor (GCGR). The objective of this study was to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) of IONIS-GCGRRx via population-based modeling. The observed data were obtained from a Phase 1 (50, 100, 200, 300 and 400 mg) single- and multiple-dose study in healthy volunteers and a Phase 2 (100 and 200 mg) multiple-dose study in T2DM patients. The PK of IONIS GCGRRx was characterized by two primary systemic compartments and three absorption transit compartments with elimination out of the peripheral compartment. The fasting plasma glucose (FPG) PD was an indirect-response model (inhibition of FPG production) linked to the HbA1c PD model which was a semi-mechanistic model capturing RBC maturation dynamics. Stepwise covariate modeling was performed to identify relevant covariates. In the PK model, bodyweight (BW) was the only significant covariate influencing tissue clearance, tissue volume and plasma volume. Plots of parameter-covariate relations indicate the influence of BW is clinically relevant. In the PD models, baseline HbA1c had a positive correlation with I max and baseline FPG had a negative correlation with the glycosylation rate (k gl ). Simulations from the final model showed that the doses tested in the Phase 2 were at or close to the maximum of the dose-response curve and that dose reduction down to 50 mg resulted in minimal effect to efficacy. The model was useful in supporting the decision for dose reduction in a subsequent trial.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Adolescente , Adulto , Idoso , Glicemia/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Adulto Jovem
20.
Nat Commun ; 7: 12639, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27577745

RESUMO

Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target.


Assuntos
Antígenos CD/metabolismo , Diabetes Mellitus Tipo 2/patologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/patologia , Receptor de Insulina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tecido Adiposo Branco/patologia , Adolescente , Animais , Antígenos CD/genética , Biópsia , Linhagem Celular , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Obesidade/sangue , Obesidade/etiologia , Obesidade/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Fosforilação , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/genética , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...