Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
MycoKeys ; 104: 71-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665969

RESUMO

The genus Favolaschia within the family Mycenaceae is characterised by the gelatinous basidiomata with poroid hymenophore and most species inhabit monocotyledonous plants. In this study, many samples covering a wide geographic range in China were examined morphologically and phylogenetically using concatenated ITS1-5.8S-ITS2-nLSU sequence data. Three new species clustering in Favolaschiasect.Anechinus, namely Favolaschiaimbricata, F.miscanthi and F.sinarundinariae, are described. Favolaschiaimbricata is characterised by imbricate basidiomata with pale grey to greyish colour when fresh and broadly ellipsoid basidiospores measuring 7-9 × 5-6.8 µm; F.miscanthi is characterised by satin white basidiomata when fresh, broadly ellipsoid basidiospores measuring 7.5-10 × 5.5-7 µm and inhabit rotten Miscanthus; F.sinarundinariae is characterised by greyish-white basidiomata when fresh, dark grey near the base upon drying, broadly ellipsoid to subglobose basidiospores measuring 7-9 × 5-7 µm and inhabit dead Sinarundinaria. The differences amongst the new species and their morphologically similar and phylogenetically related species are discussed. In addition, an updated key to 19 species of Favolaschia found in China is provided.

2.
Plant Cell Rep ; 43(4): 93, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467927

RESUMO

KEY MESSAGE: VyPUB21 plays a key role during the defense against powdery mildew in grapes. Ubiquitin-ligating enzyme (E3), a type of protein widely found in plants, plays a key role in their resistance to disease. Yet how E3 participates in the disease-resistant response of Chinese wild grapevine (Vitis yeshanensis) remains unclear. Here we isolated and identified a U-box type E3 ubiquitin ligase, VyPUB21, from V. yeshanensis. This gene's expression level rose rapidly after induction by exogenous salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) and powdery mildew. In vitro ubiquitination assay results revealed VyPUB21 could produce ubiquitination bands after co-incubation with ubiquitin, ubiquitin-activating enzyme (E1), and ubiquitin-conjugating enzyme (E2); further, mutation of the conserved amino acid site in the U-box can inhibit the ubiquitination. Transgenic VyPUB21 Arabidopsis had low susceptibility to powdery mildew, and significantly fewer conidiophores and spores on its leaves. Expression levels of disease resistance-related genes were also augmented in transgenic Arabidopsis, and its SA concentration also significantly increased. VyPUB21 interacts with VyNIMIN and targets VyNIMIN protein hydrolysis through the 26S proteasome system. Thus, the repressive effect of the NIMIN-NPR complex on the late systemic acquired resistance (SAR) gene was attenuated, resulting in enhanced resistance to powdery mildew. These results indicate that VyPUB21 encoding ubiquitin ligase U-box E3 activates the SA signaling pathway, and VyPUB21 promotes the expression of late SAR gene by degrading the important protein VyNIMIN of SA signaling pathway, thus enhancing grape resistance to powdery mildew.


Assuntos
Arabidopsis , Ascomicetos , Vitis , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ubiquitinas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
3.
Mycology ; 14(3): 204-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583455

RESUMO

Wood-rotting basidiomycetes have been investigated in the Chinese forest ecosystem for the past 30 years. Two hundred and five pathogenic wood-decayers belonging to 9 orders, 30 families, and 74 genera have been found in Chinese native forests, plantations, and gardens. Seventy-two species (accounting for 35% of the total pathogenic species) are reported as pathogenic fungi in China for the first time. Among these pathogens, 184 species are polypores, nine are corticioid fungi, eight are agarics and five are hydnoid basidiomycetes. One hundred and seventy-seven species (accounting for 86%) cause white rot, while 28 species (accounting for 14%) result in brown rot; 157 species grow on angiosperm trees (accounting for 76.5%) and 44 species occur on gymnosperm trees (accounting for 21.5%), only four species inhabit both angiosperms and gymnosperms (accounting for 2%); 95 species are distributed in boreal to temperate forests and 110 in subtropical to tropical forests. In addition, 17 species, including Fomitopsis pinicola, Heterobasidion parviporum, and Phellinidium weirii etc. which were previously treated as pathogenic species in China, do not occur in China according to recent studies. In this paper, the host(s), type of forest, rot type, and distribution of each pathogenic species in China are given.

4.
Int J Biol Macromol ; 248: 125924, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481184

RESUMO

Engineered bone tissue that can promote osteogenic differentiation is considered an ideal substitute for materials to heal bone defects. Extracellular vesicle (EV)-based cell-free regenerative therapies represent an emerging promising alternative for bone tissue engineering. We hypothesized that EVs derived from human nasal mucosa-derived ectomesenchymal stem cells (hEMSCs) can promote bone tissue regeneration. Herein, hEMSCs were cultured with osteogenic induction medium or normal medium to generate two types of EVs. We first demonstrated that the two EVs exhibited strong potential to promote rat suture mesenchymal stem cell (SMSC) osteogenesis by transferring TG2 to SMSCs and regulating extracellular matrix (ECM) synthesis. Next, we developed a composite hydrogel made of porcine omentum and chitosan into which EVs were adsorbed to enable the effective delivery of EVs with sustained release kinetics. Implantation of the EV-loaded hydrogels in a critical-size rat cranial defect model significantly promoted bone regeneration. Therefore, we suggest that our hEMSC-derived EV-loading system can serve as a new therapeutic paradigm for promoting bone tissue regeneration in the clinic.


Assuntos
Quitosana , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Animais , Ratos , Suínos , Osteogênese , Omento , Hidrogéis , Mucosa Nasal , Crânio
5.
Front Cell Infect Microbiol ; 13: 1189600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284500

RESUMO

Two new species of Scytinostroma viz. S. acystidiatum and S. macrospermum, are described from southwest China. Phylogeny based on ITS + nLSU dataset demonstrates that samples of the two species form two independent lineages and are different in morphology from the existing species of Scytinostroma. Scytinostroma acystidiatum is characterized by resupinate, coriaceous basidiomata with cream to pale yellow hymenophore, a dimitic hyphal structure with generative hyphae bearing simple septa, the absence of cystidia, and amyloid, broadly ellipsoid basidiospores measuring 4.7-7 × 3.5-4.7 µm. Scytinostroma macrospermum is characterized by resupinate, coriaceous basidiomata with cream to straw yellow hymenophore, a dimitic hyphal structure with generative hyphae bearing simple septa, numerous cystidia embedded or projecting from hymenium, and inamyloid, ellipsoid basidiospores measuring 9-11 × 4.5-5.5 µm. The differences between the new species and morphologically similar and phylogenetically related species are discussed.


Assuntos
Basidiomycota , DNA Espaçador Ribossômico/química , DNA Ribossômico/química , DNA Fúngico/genética , Análise de Sequência de DNA , Basidiomycota/genética , China , Esporos Fúngicos
6.
Front Cell Infect Microbiol ; 13: 1133839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896189

RESUMO

At present, 25 species are accepted in Haploporus and are distributed in Asia, Europe, North America, South America, Australia, and Africa. In this study, two new species, Haploporus ecuadorensis from Ecuador and H. monomitica from China, are described and illustrated based on morphological examination and phylogenetic analyses. H. ecuadorensis is characterized by annual, resupinate basidiomata with pinkish buff to honey yellow hymenophore when dry, round to angular pores of 2-4 per mm, a dimitic hyphal structure with generative hyphae bearing clamp connections, hyphae at dissepiment edge usually with one or two simple septa, the presence of dendrohyphidia and cystidioles, and oblong to ellipsoid basidiospores measuring 14.9-17.9 × 6.9-8.8 µm. Haploporus monomitica differs from other Haploporus species in that it has a monomitic hyphal system and strongly dextrinoid basidiospores. The differences between the new species and morphologically similar and phylogenetically related species are discussed. In addition, an updated key to 27 species of Haploporus is provided.


Assuntos
Basidiomycota , Polyporales , Polyporales/genética , Filogenia , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Equador , Basidiomycota/genética , China , Esporos Fúngicos/genética
7.
Biomater Sci ; 11(7): 2605, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36883616

RESUMO

Correction for 'Preparation and characterizations of an injectable and biodegradable high-strength iron-bearing brushite cement for bone repair and vertebral augmentation applications' by Luguang Ding et al., Biomater. Sci., 2023, 11, 96-107, https://doi.org/10.1039/D2BM01535H.

9.
Mol Biol Rep ; 50(2): 1293-1302, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36456772

RESUMO

BACKGROUND: Despite their high repair capability, bone defects still present a major challenge in orthopedic tissue engineering. Osteoblast differentiation is central to the treatment of bone defects. METHODS AND RESULTS: We used nasal mucosal-derived ectoderm mesenchymal stem cells (EMSCs) to promote osteogenic differentiation by co-culturing MC3T3-E1 cells. Our results showed that MC3T3-E1/EMSCs co-culture upregulated bone-related proteins and transglutaminase 2 (TG2) and increased alkaline phosphatase (ALP) activity and bone nodule formation relative to controls. Furthermore, our results showed that EMSC-derived sonic hedgehog (Shh) accounted for the enhanced MC3T3-E1 differentiation because inhibiting Shh signaling substantially reduced osteogenic differentiation. CONCLUSION: Altogether, these results suggest that EMSCs differentiated into osteoblast cells and supported MC3T3-E1 differentiation. Thus, EMSCs may be a promising cell source for treating bone-related diseases.


Assuntos
Proteínas Hedgehog , Células-Tronco Mesenquimais , Proteínas Hedgehog/metabolismo , Osteogênese , Ectoderma/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo
10.
Biomater Sci ; 11(1): 96-107, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445030

RESUMO

Brushite cements have good osteoconductive and resorbable properties, but the low mechanical strength and poor injectability limit their clinical applications in load-bearing conditions and minimally invasive surgery. In this study, an injectable brushite cement that contains monocalcium phosphate monohydrate (MCPM) and ß-tricalcium phosphate (ß-TCP) as its solid phase and ammonium ferric citrate (AFC) solution as the aqueous medium was designed to have high mechanical strength. The optimized formulation achieved a compressive strength of 62.8 ± 7.2 MPa, which is above the previously reported values of hand-mixing brushite cements. The incorporation of AFC prolonged the setting times and greatly enhanced the injectability and degradation properties of the cements. In vitro and in vivo experiments demonstrated that the brushite cements exhibited good biocompatibility and bone regeneration capacity. The novel brushite cement is promising for bone healing in load-bearing applications.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Teste de Materiais , Cimentos Ósseos/farmacologia , Ferro
11.
Stem Cells Int ; 2022: 3715471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355590

RESUMO

Background: The repair and regeneration of large bone defects represent highly challenging tasks in bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of osteogenic differentiation in ectomesenchymal stem cells (EMSCs) is not well studied. Methods and Results: In this study, the direct effects of periodic heat stress on the differentiation of EMSCs into osteoblasts were investigated. EMSCs derived from rat nasal respiratory mucosa were seeded onto culture plates, followed by 1 h of heat stress at 41°C every 7 days during osteogenic differentiation. Based on the results of the present study, periodic heating increases alkaline phosphatase (ALP) activity, upregulates osteogenic-related proteins, and promotes EMSC mineralization. In particular, increased YAP nuclear translocation and YAP knockdown inhibited osteogenic differentiation induced by heat stress. Furthermore, the expression and activity of transglutaminase 2 (TG2) were significantly increased after YAP nuclear translocation. Conclusion: Together, these results indicate that YAP plays a key role in regulating cellular proteostasis under stressful cellular conditions by modulating the TG2 response.

12.
Int J Biol Macromol ; 204: 441-456, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151707

RESUMO

Here, we evaluated osteogenic differentiation in vitro and new bone formation in vivo using an alendronate-loaded chitosan/polycaprolactone scaffold (CS/PCL) in rats with a critical-sized calvarial defect. Through the action of genipin, which has a crosslinking function, alendronate (AL) was anchored throughout the CS/PCL composite scaffold (CS/PCL@AL) to form an AL sustained release system. We demonstrated that CS/PCL@AL scaffolds significantly enhanced the osteogenic differentiation of ectomesenchymal stem cells (EMSCs) in vitro. Additionally, we explored the possible molecular mechanism of CS/PCL@AL scaffolds in the osteogenic differentiation of EMSCs. This composite scaffold exerted two positive effects on EMSC osteogenic differentiation: 1) the CS/PCL@AL scaffold enhanced EMSC osteogenic differentiation by upregulating bone morphogenetic protein 2, interleukin 10 and laminin expression; and 2) the CS/PCL@AL scaffold promoted the osteogenic differentiation of EMSCs by activating the yes-associated protein (YAP) signaling pathway. YAP and its downstream target transglutaminase are crucial mediators in the osteogenic differentiation of EMSCs. Finally, micro-computed tomography analyses and histology results suggested that the CS/PCL@AL scaffold exhibited a superior capacity to accelerate new and mature bone formation in skull bone defects in Sprague-Dawley rats. This simple and low-cost technology may represent a promising strategy to construct an efficient delivery system to repair bone defects.


Assuntos
Quitosana , Alendronato/farmacologia , Animais , Regeneração Óssea , Diferenciação Celular , Quitosana/farmacologia , Osteogênese , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais , Microtomografia por Raio-X
13.
Macromol Biosci ; 22(3): e2100416, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34962099

RESUMO

In the present study, fibrin-based biomaterials made of zeolite imidazole framework-8 (ZIF-8) and fibrin gel (Z-FG) are fabricated with the aim of enhancing skull regeneration. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet (UV)-vis spectrophotometry, Fourier transform infrared spectroscopy, and rheometry are used to characterize ZIF-8 and Z-FG. The influences of ZIF-8 on the physical properties of fibrin gel (e.g., porosity, modulus, and in vitro biodegradation) are investigated, and the effect of ZIF-8 concentration on fibrin gel properties in vitro is determined by seeding ectomesenchymal stem cells (EMSCs) over Z-FG. EMSC osteogenic differentiation reveals higher expression of bone-related proteins and higher calcium deposition and alkaline phosphatase activity, indicating that Z-FG may be a good osteoinductive biomaterial. Furthermore, these results show that the piezochannel and yes-associated protein (YAP) signaling pathway are involved in the differentiation process. In addition, the in vivo results demonstrate that Z-FG increases bone formation in critical-sized calvarial defects in rats. Thus, the developed composite scaffold may be a suitable biomaterial for skull tissue-engineering applications.


Assuntos
Osteogênese , Zeolitas , Animais , Materiais Biocompatíveis/química , Regeneração Óssea , Diferenciação Celular , Fibrina/química , Fibrina/farmacologia , Imidazóis , Ratos , Crânio , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Zeolitas/farmacologia
14.
J Cell Mol Med ; 26(3): 813-827, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953037

RESUMO

Despite the growing recognition of ITGB3BP as an essential feature of various cancers, the relationship between ITGB3BP and glioma remains unclear. The main aim of this study was to determine the prognostic and diagnostic value of ITGB3BP in glioma. RNA-Seq and microarray data from 2222 glioma patients were included, and we found that the expression level of ITGB3BP in glioma tissues was significantly higher than that in normal brain tissues. Moreover, ITGB3BP can be considered an independent risk factor for poor prognosis and has great predictive value for the prognosis of glioma. Gene Set Enrichment Analysis results showed that ITGB3BP contributes to the poor prognosis of glioma by activating tumour-related signalling pathways. Some small-molecule drugs were identified, such as hexestrol, which may specifically inhibit ITGB3BP and be useful in the treatment of glioma. The TIMER database analysis results revealed a correlation between the expression of ITGB3BP and the infiltration of various immune cells in glioma. Our findings provide the first evidence that the up-regulation of ITGB3BP correlates with poor prognosis in human glioma. Thus, ITGB3BP is a potential new biomarker that can be used for the clinical diagnosis and treatment of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Humanos , Proteínas Nucleares/genética , Transdução de Sinais , Regulação para Cima
15.
Nanoscale Res Lett ; 16(1): 154, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637014

RESUMO

At bio-safe concentrations, black phosphorus nanoparticles activated TG2, and promote the expression of ECM, which further promoted osteogenic differentiation of EMSCs. From these results, we can conclude that black phosphorus nanoparticles are suitable as biological factors in bone tissue engineering. Black phosphorus nanoparticles (BPs) present excellent biocompatibility and good biodegradability, which have been rigorously studied and proven. However, its utilization in bone tissue engineering fields is still in its infancy. Thus, the main purpose of the present study was to investigate the effects of BPs on osteogenic differentiation of ectodermal mesenchymal stem cell (EMSC) in vitro. Biocompatible BPs with high yield were prepared with a simple and efficient ultrasonication technique. EMSCs were isolated from adult rat nasal respiratory mucosa. Then, we treated EMSCs with BPs at different concentrations in vitro and examined the effect of BPs on osteogenic differentiation of EMSCs. In addition, inhibitor of transglutaminase 2 (TG2) and western blot were used to clarify the mechanism of the promoting effect of BPs on osteogenesis. Our results indicated that BPs could significantly enhance osteogenic differentiation of EMSCs in vitro. Nevertheless, BPs had no effect on EMSCs proliferation. Mechanistically, BPs promoted osteogenesis differentiation of EMSCs through upregulating TG2 expression. These results highlight the advantage of using chemical materials for novel engineering strategies of these highly promising small molecules for bone-tissue regeneration.

16.
BMC Plant Biol ; 21(1): 422, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535070

RESUMO

BACKGROUND: RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, which plays an important role in plant growth and development, and growth and responses to biotic and abiotic stresses. RESULTS: A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, and these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VvRCHCs family together. Structural analysis showed that most VvRCHCs (67.13 %) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VvRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were like the results of qRT-PCR analysis. In vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance. Moreover, the transgenic plant survival rate increased by 30 %, accompanied by electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. The quantitative expression of AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 showed that they participated in the response to drought stress may be regulated by the expression of VyRCHC114. CONCLUSIONS: This study provides valuable new information for the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress.


Assuntos
Secas , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética , Vitis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Desidratação , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glutamato-5-Semialdeído Desidrogenase/genética , Complexos Multienzimáticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos , Ubiquitina-Proteína Ligases/metabolismo
17.
Cancer Med ; 10(15): 5218-5234, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34264013

RESUMO

BACKGROUND: The carcinogenic effect of NUP37 has been reported recently in a variety of tumors, but its research in the field of glioma has not been paid attention. The main purpose of this study is to reveal the relationship between NUP37 and prognosis or clinical characteristics of glioma patients. METHODS: First, as a retrospective study, this study included thousands of tissue samples based on a variety of public databases and clinicopathological tissues. Second, a series of bioinformatics analysis methods were used to analyze the NUP37 and glioma samples from multiple databases such as the CGGA, TCGA, GEO, HPA, and GEPIA. Third, to analyze the relationship between the expression level of NUP37 in tumor tissues and cells and a variety of clinical prognostic molecular characteristics, whether it can be an independent risk factor leading to poor prognosis in glioma and whether it has clinical diagnostic value; GSEA was used to analyze the cancer-related signaling pathways that may be activated by high expression of NUP37. Fifth, CMap was used to analyze small molecule drugs that may inhibit NUP37 expression. Finally, the meta-analysis of thousands of tissue samples from seven datasets and cell proliferation and migration experiments confirmed that NUP37 has a malignant effect on glioma. RESULTS: NUP37 is highly expressed in glioma patient tissues and glioma cells, significantly correlates with reduced overall survival, and may serve as an independent prognostic factor with some diagnostic value. Silencing NUP37 suppresses malignant biological behaviors of glioma cells. 4 small molecule drugs that had potential targeting inhibitory effects on NUP37 overexpression. CONCLUSIONS: This study demonstrates for the first time a malignant role of NUP37 in glioma and provides a vision to unravel the complex pathological mechanisms of glioma and a potentially valuable biomarker for implementing individualized diagnosis and treatment of glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/fisiologia , Glioma/metabolismo , Glioma/patologia , Proteínas de Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Biologia Computacional/métodos , Bases de Dados Factuais/estatística & dados numéricos , Bases de Dados Genéticas , Glioma/mortalidade , Humanos , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas de Neoplasias/genética , Complexo de Proteínas Formadoras de Poros Nucleares/efeitos dos fármacos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Prognóstico , Análise Serial de Proteínas , Estudos Retrospectivos , Transdução de Sinais
18.
Mol Med ; 27(1): 52, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051735

RESUMO

BACKGROUND: XRCC2, a homologous recombination-related gene, has been reported to be associated with a variety of cancers. However, its role in glioma has not been reported. This study aimed to find out the role of XRCC2 in glioma and reveal in which glioma-specific biological processes is XRCC2 involved based on thousands of glioma samples, thereby, providing a new perspective in the treatment and prognostic evaluation of glioma. METHODS: The expression characteristics of XRCC2 in thousands of glioma samples from CGGA and TCGA databases were comprehensively analyzed. Wilcox or Kruskal test was used to analyze the expression pattern of XRCC2 in gliomas with different clinical and molecular features. The effect of XRCC2 on the prognosis of glioma patients was explored by Kaplan-Meier and Cox regression. Gene set enrichment analysis (GSEA) revealed the possible cellular mechanisms involved in XRCC2 in glioma. Connectivity map (CMap) was used to screen small molecule drugs targeting XRCC2 and the expression levels of XRCC2 were verified in glioma cells and tissues by RT-qPCR and immunohistochemical staining. RESULTS: We found the overexpression of XRCC2 in glioma. Moreover, the overexpressed XRCC2 was associated with a variety of clinical features related to prognosis. Cox and meta-analyses showed that XRCC2 is an independent risk factor for the poor prognosis of glioma. Furthermore, the results of GSEA indicated that overexpressed XRCC2 could promote malignant progression through involved signaling pathways, such as in the cell cycle. Finally, doxazosin, quinostatin, canavanine, and chrysin were identified to exert anti-glioma effects by targeting XRCC2. CONCLUSIONS: This study analyzed the expression pattern of XRCC2 in gliomas and its relationship with prognosis using multiple datasets. This is the first study to show that XRCC2, a novel oncogene, is significantly overexpressed in glioma and can lead to poor prognosis in glioma patients. XRCC2 could serve as a new biomarker for glioma diagnosis, treatment, and prognosis evaluation, thus bringing new insight into the management of glioma.


Assuntos
Biomarcadores Tumorais , Proteínas de Ligação a DNA/genética , Expressão Gênica , Glioma/genética , Glioma/mortalidade , Adulto , Idoso , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Feminino , Perfilação da Expressão Gênica , Glioma/diagnóstico , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Fatores de Risco , Transdução de Sinais , Relação Estrutura-Atividade
19.
Amino Acids ; 53(1): 11-22, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33245424

RESUMO

As a promising cell therapy, neural crest-derived ectoderm mesenchymal stem cells (EMSCs) secrete high amounts of extracellular matrix (ECM) and neurotrophic factors, promoting neural stem cell (NSC) differentiation into neuronal lineages and aiding tissue regeneration. Additionally, the forced overexpression of secreted proteins can increase the therapeutic efficacy of the secretome. Tissue transglutaminase (TG2) is a ubiquitously expressed member of the transglutaminase family of calcium-dependent crosslinking enzymes, which can stabilize the ECM, inducing smart or living biomaterial to stimulate differentiation and enhance the neurogenesis of NSCs. In this study, we examined the neuronal differentiation of NSCs induced by TG2 gene-modified EMSCs (TG2-EMSCs) in a co-culture model directly. Two weeks after initiating differentiation, levels of the neuronal markers, tubulin beta 3 class III and growth-associated protein 43, were higher in NSCs in the TG2-EMSC co-culture group and those of the astrocytic marker glial fibrillary acidic protein were lower, compared with the control group. These results were confirmed by immunofluorescence, and laminin, fibronectin and sonic hedgehog (Shh) contributed to this effect. The results of western blot analysis and the enzyme-linked immunoassay showed that after TG2-EMSCs were co-cultured for 2 weeks, they expressed much higher levels of Shh than the control group. Moreover, the sustained release of Shh was observed in the TG2-EMSC co-culture group. Overall, our findings indicate that EMSCs can induce the differentiation of NSCs, of which TG2-EMSCs can promote the differentiation of NSCs compared with EMSCs.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/citologia , Transglutaminases/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fibronectinas/metabolismo , Proteínas de Ligação ao GTP/genética , Laminina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Transglutaminases/genética
20.
Int J Med Mushrooms ; 22(7): 705-717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865927

RESUMO

Ganoderma tsugae strain MCCCMAS0053 cultivation on short logs results in varied yield and quality under different growth conditions. Thus, growth conditions need optimization to increase yield and quality. An indoor experiment with three shade treatments (A1, two layers of black sun-shade net; A2, one layer of black sun-shade net plus plastic mulch; A3, one layer of black sun-shade net) and a field experiment in two forest types (pine or mixed pine-oak) were conducted. The results showed that shading and forest type significantly affected light intensities and the growth, size, biomass, and bioactive components of G. tsugae fruiting bodies. In the indoor experiment, the mean dry weight of the fruiting body and the diameter of the pileus in A2 increased by 21.51-44.98% and 13.42-22.26%, respectively, compared with those of A1 and A3. Similarly, the accumulation of the bioactive compounds (polysaccharides, total amino acids, and total essential amino acids) in the pileus and stipe were greater in A2 than in A1 and A3. Furthermore, compared with pure pine forest cultivation, fruiting bodies cultivated in mixed pine-oak forest had greater dry weight, pileus diameter, and more bioactive compounds. In addition, no significant difference was found between the A2 and mixed pine-oak treatments, which had a similar light intensity (from 1116 to 2367 lx). Hence, this suggests that the A2 shade treatment or cultivation in mixed pine-oak forest is beneficial for production of G. tsugae fruiting bodies, and light intensity may play a critical role in this process.


Assuntos
Carpóforos/química , Ganoderma/química , Ganoderma/crescimento & desenvolvimento , Aminoácidos/análise , Florestas , Umidade , Luz , Polissacarídeos/análise , Temperatura , Triterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...