Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(23): 34056-34081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696015

RESUMO

Extensive research has been diligently conducted on wind energy technologies in response to pressing global environmental challenges and the growing demand for energy. Accurate wind speed predictions are crucial for the effective integration of large wind power systems. This study presents a novel and hybrid framework called ICEEMDAN-Informer-GWO, which combines three components to enhance the accuracy of wind speed predictions. The improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) component improves the decomposition of wind speed data, the Informer model provides computationally efficient wind speed predictions, and the grey wolf optimisation (GWO) algorithm optimises the parameters of the Informer model to achieve superior performance. Three different sets of wind speed prediction (WSP) models and wind farm data from Block Island, Gulf Coast, and Garden City are used to thoroughly assess the proposed hybrid framework. This evaluation focusses on WSP for three specific time horizons: 5 minutes, 30 minutes, and 1 hour ahead. The results obtained from the three conducted experiments conclusively demonstrate that the proposed hybrid framework exhibits superior performance, leading to statistically significant improvements across all three time horizons.


Assuntos
Algoritmos , Modelos Teóricos , Vento
2.
Environ Sci Pollut Res Int ; 30(14): 40018-40030, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602735

RESUMO

Precise wind speed prediction is crucial for the management of the wind power generation systems. However, the stochastic nature of the wind speed makes optimal interval prediction very complicated. In this paper, a hybrid approach consisting of improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), temporal convolutional network with attention mechanism (ATCN), and bidirectional long short-term memory network (Bi-LSTM) is proposed for wind speed interval prediction (WSIP). First, ICEEMDAN is used to pre-process the raw data by decomposing the wind signal to several intrinsic mode functions. ATCN is used to reduce the uncertainty from the denoised data and extract the important temporal and spatial characteristics. Then, Bi-LSTM is used to forecast the high-quality intervals for the wind speed. Existing approaches observe a decline in the forecasting performance when the time ahead increases. As a result, the hybrid approach is evaluated using 5-min, 10-min, and 30-min ahead WSIP. To evaluate the novelty of the proposed approach, an experiment is conducted utilising wind speed data from the Garden City, Manhattan wind farm. The experimental results demonstrate that the proposed framework outperformed the comparison models with percentage improvements of 36%, 47%, and 17% for 5-min, 10-min, and 30-min ahead WSIP.


Assuntos
Algoritmos , Redes Neurais de Computação , Incerteza , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...