Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673965

RESUMO

CRNDE is considered an oncogene expressed as long non-coding RNA. Our previous paper is the only one reporting CRNDE as a micropeptide-coding gene. The amino acid sequence of this micropeptide (CRNDEP) has recently been confirmed by other researchers. This study aimed at providing a mass spectrometry (MS)-based validation of the CRNDEP sequence and an investigation of how the differential expression of CRNDE(P) influences the metabolism and chemoresistance of ovarian cancer (OvCa) cells. We also assessed cellular localization changes of CRNDEP, looked for its protein partners, and bioinformatically evaluated its RNA-binding capacities. Herein, we detected most of the CRNDEP sequence by MS. Moreover, our results corroborated the oncogenic role of CRNDE, portraying it as the gene impacting carcinogenesis at the stages of DNA transcription and replication, affecting the RNA metabolism, and stimulating the cell cycle progression and proliferation, with CRNDEP being detected in the centrosomes of dividing cells. We also showed that CRNDEP is located in nucleoli and revealed interactions of this micropeptide with p54, an RNA helicase. Additionally, we proved that high CRNDE(P) expression increases the resistance of OvCa cells to treatment with microtubule-targeted cytostatics. Furthermore, altered CRNDE(P) expression affected the activity of the microtubular cytoskeleton and the formation of focal adhesion plaques. Finally, according to our in silico analyses, CRNDEP is likely capable of RNA binding. All these results contribute to a better understanding of the CRNDE(P) role in OvCa biology, which may potentially improve the screening, diagnosis, and treatment of this disease.


Assuntos
Carcinogênese , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
2.
TH Open ; 7(4): e294-e302, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37964899

RESUMO

Introduction Atrial fibrillation (AF) increases the risk of ischemic stroke (IS). We hypothesized that the functional form of platelet receptor glycoprotein (GP) VI, GPVI-dimer, which binds to collagen and fibrin causing platelet activation, is overexpressed in patients with AF who have not had a stroke. Methods A total of 75 inpatients with AF were recruited. None were admitted with or had previously had thrombotic events, including IS or myocardial infarction. Platelet surface expression of total GPVI, GPVI-dimer, and the platelet activation marker P-selectin were quantitated by whole blood flow cytometry. Serum biomarkers were collected in AF patients. Results were compared against patients contemporaneously admitted to hospital with similar age and vascular risk-factor profiles without AF (noAF, n = 30). Results Patients with AF have similar total GPVI surface expression ( p = 0.58) and P-selectin exposure ( p = 0.73) on their platelets compared with noAF patients but demonstrate significantly higher GPVI-dimer expression ( p = 0.02 ). Patients with paroxysmal AF express similar GPVI-dimer levels compared with permanent AF and GPVI-dimer levels were not different between anticoagulated groups. Serum N-terminal pro b-type natriuretic peptide ( p < 0.0001 ) and high sensitivity C-reactive protein ( p < 0.0001 ) were significantly correlated with GPVI-dimer expression in AF platelets. AF was the only vascular risk factor that was independently associated with higher GPVI-dimer expression in the whole population ( p = 0.02 ) . Conclusion GPVI inhibition is being explored in clinical trials as a novel target for IS treatment. As GPVI-dimer is elevated in AF patients' platelets, the exploration of targeted GPVI-dimer inhibition for stroke prevention in patients at high risk of IS due to AF is supported.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894834

RESUMO

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.


Assuntos
Síndrome de Ehlers-Danlos , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas de Ligação a Tacrolimo/metabolismo , Colágeno/genética , Peptidilprolil Isomerase/genética , Mutação , Síndrome de Ehlers-Danlos/genética
4.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555126

RESUMO

Hepcidin (DTHFPICIFCCGCCHRSKCGMCCKT), an iron-regulatory hormone, is a 25-amino-acid peptide with four intramolecular disulfide bonds circulating in blood. Its hormonal activity is indirect and consists of marking ferroportin-1 (an iron exporter) for degradation. Hepcidin biosynthesis involves the N-terminally extended precursors prepro-hepcidin and pro-hepcidin, processed by peptidases to the final 25-peptide form. A sequence-specific formation of disulfide bonds and export of the oxidized peptide to the bloodstream follows. In this study we considered the fact that prior to export, reduced hepcidin may function as an octathiol ligand bearing some resemblance to the N-terminal part of the α-domain of metallothioneins. Consequently, we studied its ability to bind Zn(II) and Cd(II) ions using the original peptide and a model for prohepcidin extended N-terminally with a stretch of five arginine residues (5R-hepcidin). We found that both form equivalent mononuclear complexes with two Zn(II) or Cd(II) ions saturating all eight Cys residues. The average affinity at pH 7.4, determined from pH-metric spectroscopic titrations, is 1010.1 M-1 for Zn(II) ions; Cd(II) ions bind with affinities of 1015.2 M-1 and 1014.1 M-1. Using mass spectrometry and 5R-hepcidin we demonstrated that hepcidin can compete for Cd(II) ions with metallothionein-2, a cellular cadmium target. This study enabled us to conclude that hepcidin binds Zn(II) and Cd(II) sufficiently strongly to participate in zinc physiology and cadmium toxicity under intracellular conditions.


Assuntos
Cádmio , Hepcidinas , Cádmio/metabolismo , Peptídeos , Ferro , Dissulfetos , Metalotioneína/metabolismo
6.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080347

RESUMO

Nickel is toxic to humans. Its compounds are carcinogenic. Furthermore, nickel allergy is a severe health problem that affects approximately 10-20% of humans. The mechanism by which these conditions develop remains unclear, but it may involve the cleavage of specific proteins by nickel ions. Ni(II) ions cleave the peptide bond preceding the Ser/Thr-Xaa-His sequence. Such sequences are present in all four enzymes of the melatonin biosynthesis pathway, i.e., tryptophan 5-hydroxylase 1, aromatic-l-amino-acid decarboxylase, serotonin N-acetyltransferase, and acetylserotonin O-methyltransferase. Moreover, fragments prone to Ni(II) are exposed on surfaces of these proteins. Our results indicate that all four studied fragments undergo cleavage within tens of hours at pH 8.2 and 37 °C, corresponding with the conditions in the mitochondrial matrix. Since melatonin, a potent antioxidant and anti-inflammatory agent, is synthesized within the mitochondria of virtually all human cells, depleting its supply may be detrimental, e.g., by raising the oxidative stress level. Intriguingly, Ni(II) ions have been shown to mimic hypoxia through the stabilization of HIF-1α protein, but melatonin prevents the action of HIF-1α. Considering all this, the enzymes of the melatonin biosynthesis pathway seem to be a toxicological target for Ni(II) ions.


Assuntos
Melatonina , Níquel , Humanos , Íons , Melatonina/farmacologia , Níquel/química , Ligação Proteica , Proteínas/metabolismo
7.
Front Mol Biosci ; 9: 828674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359602

RESUMO

Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.

8.
Biochim Biophys Acta Proteins Proteom ; 1870(5): 140771, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306228

RESUMO

Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.


Assuntos
Colágeno , Tirosina , Animais , Arginina , Sítios de Ligação , Adesão Celular , Colágeno/química , Colágeno/metabolismo , Colágeno Tipo I , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Peptídeos/química , Suínos , Tirosina/análogos & derivados
9.
PLoS One ; 17(1): e0262695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35041713

RESUMO

OBJECTIVES: Platelet activation underpins thrombus formation in ischemic stroke. The active, dimeric form of platelet receptor glycoprotein (GP) VI plays key roles by binding platelet ligands collagen and fibrin, leading to platelet activation. We investigated whether patients presenting with stroke expressed more GPVI on their platelet surface and had more active circulating platelets as measured by platelet P-selectin exposure. METHODS: 129 ischemic or hemorrhagic stroke patients were recruited within 8h of symptom onset. Whole blood was analyzed for platelet-surface expression of total GPVI, GPVI-dimer, and P-selectin by flow cytometry at admission and day-90 post-stroke. Results were compared against a healthy control population (n = 301). RESULTS: The platelets of stroke patients expressed significantly higher total GPVI and GPVI-dimer (P<0.0001) as well as demonstrating higher resting P-selectin exposure (P<0.0001), a measure of platelet activity, compared to the control group, suggesting increased circulating platelet activation. GPVI-dimer expression was strongly correlated circulating platelet activation [r2 = 0.88, P<0.0001] in stroke patients. Furthermore, higher platelet surface GPVI expression was associated with increased stroke severity at admission. At day-90 post-stroke, GPVI-dimer expression and was further raised compared to the level at admission (P<0.0001) despite anti-thrombotic therapy. All ischemic stroke subtypes and hemorrhagic strokes expressed significantly higher GPVI-dimer compared to controls (P<0.0001). CONCLUSIONS: Stroke patients express more GPVI-dimer on their platelet surface at presentation, lasting at least until day-90 post-stroke. Small molecule GPVI-dimer inhibitors are currently in development and the results of this study validate that GPVI-dimer as an anti-thrombotic target in ischemic stroke.


Assuntos
Biomarcadores/sangue , Ativação Plaquetária , Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas/análise , Acidente Vascular Cerebral/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/metabolismo , Prognóstico , Multimerização Proteica , Acidente Vascular Cerebral/metabolismo
10.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670100

RESUMO

Silver-based materials are widely used in clinical medicine. Furthermore, the usage of silver containing materials and devices is widely recommended and clinically approved. The impact on human health of the increasing use of silver nanoparticles in medical devices remains understudied, even though Ag-containing dressings are known to release silver into the bloodstream. In this study, we detected a widespread and sometimes significant silver accumulation both in healthy and sick liver biopsies, levels being statistically higher in patients with various hepatic pathologies. 28 healthy and 44 cirrhotic liver samples were investigated. The median amount of 0.049 ppm Ag in livers was measured in cirrhotic livers while the median was 0.0016 ppm for healthy livers (a more than 30-fold difference). The mean tissue concentrations of essential metals, Fe and Zn in cirrhotic livers did not differ substantially from healthy livers, while Cu was positively correlated with Ag. The serum levels of gamma-glutamyl transpeptidase (GGTP) was also positively correlated with Ag in cirrhotic livers. The increased Ag accumulation in cirrhotic livers could be a side effect of wide application of silver in clinical settings. As recent studies indicated a significant toxicity of silver nanoparticles for human cells, the above observation could be of high importance for the public health.


Assuntos
Cobre/metabolismo , Cirrose Hepática/metabolismo , Transplante de Fígado , Fígado/metabolismo , Prata/metabolismo , Adulto , Feminino , Humanos , Cirrose Hepática/cirurgia , Masculino , Pessoa de Meia-Idade
11.
Arterioscler Thromb Vasc Biol ; 41(3): 1092-1104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472402

RESUMO

OBJECTIVE: GPVI (glycoprotein VI) is a key molecular player in collagen-induced platelet signaling and aggregation. Recent evidence indicates that it also plays important role in platelet aggregation and thrombus growth through interaction with fibrin(ogen). However, there are discrepancies in the literature regarding whether the monomeric or dimeric form of GPVI binds to fibrinogen at high affinity. The mechanisms of interaction are also not clear, including which region of fibrinogen is responsible for GPVI binding. We aimed to gain further understanding of the mechanisms of interaction at molecular level and to identify the regions on fibrinogen important for GPVI binding. Approach and Results: Using multiple surface- and solution-based protein-protein interaction methods, we observe that dimeric GPVI binds to fibrinogen with much higher affinity and has a slower dissociation rate constant than the monomer due to avidity effects. Moreover, our data show that the highest affinity interaction of GPVI is with the αC-region of fibrinogen. We further show that GPVI interacts with immobilized fibrinogen and fibrin variants at a similar level, including a nonpolymerizing fibrin variant, suggesting that GPVI binding is independent of fibrin polymerization. CONCLUSIONS: Based on the above findings, we conclude that the higher affinity of dimeric GPVI over the monomer for fibrinogen interaction is achieved by avidity. The αC-region of fibrinogen appears essential for GPVI binding. We propose that fibrin polymerization into fibers during coagulation will cluster GPVI through its αC-region, leading to downstream signaling, further activation of platelets, and potentially stimulating clot growth. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Fibrinogênio/metabolismo , Fragmentos de Peptídeos/sangue , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/química , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinogênio/química , Humanos , Técnicas In Vitro , Camundongos , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Agregação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Transdução de Sinais , Ressonância de Plasmônio de Superfície
12.
J Thromb Haemost ; 19(2): 547-561, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179420

RESUMO

BACKGROUND: Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a homopolymeric, adhesive, platelet and endothelial protein that binds to von Willebrand factor and enhances platelet adhesion to fibrillar collagen ex vivo. OBJECTIVES: To examine the impact of Mmrn1 deficiency on platelet adhesive function, and the molecular motifs in fibrillar collagen that bind MMRN1 to enhance platelet adhesion. METHODS: Mmrn1-deficient mice were generated and assessed for altered platelet adhesive function. Collagen Toolkit peptides, and other triple-helical collagen peptides, were used to identify multimerin 1 binding motifs and their contribution to platelet adhesion. RESULTS: MMRN1 bound to conserved GPAGPOGPX sequences in collagens I, II, and III (including GPAGPOGPI, GPAGPOGPV, and GPAGPOGPQ) that enhanced activated human platelet adhesion to collagen synergistically with other triple-helical collagen peptides (P < .05). Mmrn1-/- and Mmrn1+/- mice were viable and fertile, with complete and partial platelet Mmrn1 deficiency, respectively. Relative to wild-type mice, Mmrn1-/- and Mmrn1+/- mice did not have overt bleeding, increased median bleeding times, or increased wound blood loss (P ≥ .07); however, they both showed significantly impaired platelet adhesion and thrombus formation in the ferric chloride injury model (P ≤ .0003). Mmrn1-/- platelets had impaired adhesion to GPAGPOGPX peptides and fibrillar collagen (P ≤ .03) and formed smaller aggregates than wild-type platelets when captured onto collagen, triple-helical collagen mimetic peptides, von Willebrand factor, or fibrinogen (P ≤ .008), despite preserved, low shear, and high shear aggregation responses. CONCLUSIONS: Multimerin 1 supports platelet adhesion and thrombus formation and binds to highly conserved, GPAGPOGPX motifs in fibrillar collagens that synergistically enhance platelet adhesion.


Assuntos
Proteínas Sanguíneas , Adesividade Plaquetária , Animais , Plaquetas , Colágenos Fibrilares , Camundongos , Fator de von Willebrand
13.
Br J Pharmacol ; 177(17): 4007-4020, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32496597

RESUMO

BACKGROUND AND PURPOSE: Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor. EXPERIMENTAL APPROACH: Human platelet activation was measured following pretreatment with R5421 and stimulation with a range of agonists. Phosphatidylserine exposure was measured using annexin V binding. Integrin αIIb ß3 activation and α-granule release were measured by flow cytometry. Cytosolic Ca2+ signals were measured using Cal520 fluorescence. An in silico ligand-based screen identified 16 compounds which were tested in these assays. KEY RESULTS: R5421 inhibited A23187-induced phosphatidylserine exposure in a time- and temperature-dependent manner. R5421 inhibited Ca2+ signalling from the PAR1, PAR4 and glycoprotein VI receptors as well as platelet αIIb ß3 integrin activation and α-granule release. R5421 is therefore not a selective inhibitor of platelet scramblase activity. An in silico screen identified the pesticide thiodicarb as similar to R5421. It also inhibited platelet phosphatidylserine exposure, Ca2+ signalling from the PAR1 and glycoprotein VI, αIIb ß3 activation and α-granule release. Thiodicarb additionally disrupted Ca2+ homeostasis in unstimulated platelets. CONCLUSION AND IMPLICATIONS: R5421 is not a selective inhibitor of platelet scramblase activity. We have identified the pesticide thiodicarb, which had similar effects on platelet function to R5421 as well as additional disruption of Ca2+ signalling which may underlie some of thiodicarb's toxicity.


Assuntos
Plaquetas , Proteínas de Transferência de Fosfolipídeos , Plaquetas/metabolismo , Humanos , Metomil/análogos & derivados , Fosfatidilserinas , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
14.
Metallomics ; 12(5): 649-653, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32393924

RESUMO

NiO nanoparticles and non-stoichiometric black NiO were shown to be effective sources of Ni2+ ions causing sequence-selective peptide bond hydrolysis. NiO nanoparticles were as effective in this reaction as their molar equivalent of soluble Ni(ii) salt. These findings highlight the efficacy of delivery of toxic Ni2+ by these environmentally available particles.


Assuntos
Nanopartículas/química , Níquel/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Hidrólise , Estrutura Molecular
15.
Chem Biodivers ; 17(2): e1900652, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31869504

RESUMO

Nickel is harmful to humans, being both carcinogenic and allergenic. However, the mechanisms of this toxicity are still unresolved. We propose that Ni(II) ions disintegrate proteins by hydrolysis of peptide bonds preceding the Ser/Thr-Xaa-His sequences. Such sequences occur in nuclear localization signals (NLSs) of human phospholipid scramblase 1, Sam68-like mammalian protein 2, and CLK3 kinase. We performed spectroscopic experiments showing that model nonapeptides derived from these NLSs bind Ni(II) at physiological pH. We also proved that these sequences are prone to Ni(II) hydrolysis. Thus, the aforementioned NLSs may be targets for nickel toxicity. This implies that Ni(II) ions disrupt the transport of some proteins from cytoplasm to cell nucleus.


Assuntos
Níquel/química , Peptídeos/química , Sequência de Aminoácidos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Íons/química , Cinética , Níquel/metabolismo , Níquel/toxicidade , Peptídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Alinhamento de Sequência , Espectrofotometria
16.
Metallomics ; 11(11): 1800-1804, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657408

RESUMO

Model peptides relevant to hCtr1 transchelate CuI from the anti-tumour [CuI(PTA)4]+ complex before metal internalization into tumor cells. ESI(+)MS experiments corroborated by DFT calculations indicate that tetracoordinated-CuII and linear-CuI arrangements of in situ generated copper-peptide products play a crucial role in promoting the transfer of copper from the terminal MDH portion into adjacent HSH peptide sequence.


Assuntos
Cobre/metabolismo , Teoria da Densidade Funcional , Endocitose , Espectrometria de Massas por Ionização por Electrospray , Modelos Moleculares , Conformação Molecular , Peptídeos/metabolismo
17.
Sci Rep ; 9(1): 13397, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527604

RESUMO

Tissue factor (TF) plays a central role in haemostasis and thrombosis. Following vascular damage, vessel wall TF initiates the extrinsic coagulation cascade. TF can also be exposed by monocytes. Inflammatory or infectious stimuli trigger synthesis of new TF protein by monocytes over the course of hours. It has also been suggested that monocytes can expose TF within minutes when stimulated by activated platelets. Here, we have confirmed that monocytes rapidly expose TF in whole blood and further demonstrate that platelet P-selectin exposure is necessary and sufficient. Monocyte TF exposure increased within five minutes in response to platelet activation by PAR1-AP, PAR4-AP or CRP-XL. PAR1-AP did not trigger TF exposure on isolated monocytes unless platelets were also present. In whole blood, PAR1-AP-triggered TF exposure required P-selectin and PGSL-1. In isolated monocytes, although soluble recombinant P-selectin had no effect, P-selectin coupled to 2 µm beads triggered TF exposure. Cycloheximide did not affect rapid TF exposure, indicating that de novo protein synthesis was not required. These data show that P-selectin on activated platelets rapidly triggers TF exposure on monocytes. This may represent a mechanism by which platelets and monocytes rapidly contribute to intravascular coagulation.


Assuntos
Plaquetas/metabolismo , Monócitos/metabolismo , Selectina-P/metabolismo , Ativação Plaquetária , Tromboplastina/metabolismo , Coagulação Sanguínea , Comunicação Celular , Humanos , Selectina-P/genética , Tromboplastina/genética
18.
Sci Rep ; 8(1): 16677, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420683

RESUMO

Citalopram, a selective serotonin reuptake inhibitor (SSRI), inhibits platelet function in vitro. We have previously shown that this action is independent of citalopram's ability to block serotonin uptake by the serotonin transporter and must therefore be mediated via distinct pharmacological mechanisms. We now report evidence for two novel and putative mechanisms of citalopram-induced platelet inhibition. Firstly, in platelets, citalopram blocked U46619-induced Rap1 activation and subsequent platelet aggregation, but failed to inhibit U46619-induced increases in cytosolic Ca2+. Similarly, in neutrophils, citalopram inhibited Rap1 activation and downstream functions but failed to block PAF-induced Ca2+ mobilisation. In a cell-free system, citalopram also reduced CalDAG-GEFI-mediated nucleotide exchange on Rap1B. Secondly, the binding of anti-GPVI antibodies to resting platelets was inhibited by citalopram. Furthermore, citalopram-induced inhibition of GPVI-mediated platelet aggregation was instantaneous, reversible and displayed competitive characteristics, suggesting that these effects were not caused by a reduction in GPVI surface expression, but by simple competitive binding. In conclusion, we propose two novel, putative and distinct inhibitory mechanisms of action for citalopram: (1) inhibition of CalDAG-GEFI/Rap1 signalling, and (2) competitive antagonism of GPVI in platelets. These findings may aid in the development of novel inhibitors of CalDAG-GEFI/Rap1-dependent nucleotide exchange and novel GPVI antagonists.


Assuntos
Citalopram/farmacologia , Neutrófilos/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Cálcio/metabolismo , Citosol/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Modelos Biológicos , Neutrófilos/citologia , Glicoproteínas da Membrana de Plaquetas/metabolismo
19.
Sci Signal ; 11(532)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844053

RESUMO

Fibrillar collagens of the extracellular matrix are critical for tissue structure and physiology; however, excessive or abnormal deposition of collagens is a defining feature of fibrosis. Regulatory mechanisms that act on collagen fibril assembly potentially offer new targets for antifibrotic treatments. Tissue weakening, altered collagen fibril morphologies, or both, are shared phenotypes of mice lacking matricellular thrombospondins. Thrombospondin-1 (TSP1) plays an indirect role in collagen homeostasis through interactions with matrix metalloproteinases and transforming growth factor-ß1 (TGF-ß1). We found that TSP1 also affects collagen fibril formation directly. Compared to skin from wild-type mice, skin from Thbs1-/- mice had reduced collagen cross-linking and reduced prolysyl oxidase (proLOX) abundance with increased conversion to catalytically active LOX. In vitro, TSP1 bound to both the C-propeptide domain of collagen I and the highly conserved KGHR sequences of the collagen triple-helical domain that participate in cross-linking. TSP1 also bound to proLOX and inhibited proLOX processing by bone morphogenetic protein-1. In human dermal fibroblasts (HDFs), TSP1 and collagen I colocalized in intracellular vesicles and on extracellular collagen fibrils, whereas TSP1 and proLOX colocalized only in intracellular vesicles. Inhibition of LOX-mediated collagen cross-linking did not prevent the extracellular association between collagen and TSP1; however, treatment of HDFs with KGHR-containing, TSP1-binding, triple-helical peptides disrupted the collagen-TSP1 association, perturbed the collagen extracellular matrix, and increased myofibroblastic differentiation in a manner that depended on TGF-ß receptor 1. Thus, the extracellular KGHR-dependent interaction of TSP1 with fibrillar collagens contributes to fibroblast homeostasis.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Trombospondina 1/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Homologia de Sequência , Pele/citologia , Pele/metabolismo
20.
J Inorg Biochem ; 182: 230-237, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402466

RESUMO

Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 1013 M-1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 1014 M-1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/química , Cobre/metabolismo , Animais , Sítios de Ligação , Transportador de Cobre 1 , Humanos , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...