Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(14): eadk5949, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578991

RESUMO

The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.


Assuntos
Criogéis , Hidrogéis , Camundongos , Animais , Silicones , Alginatos , Oxigênio , Esqueleto , Sobrevivência Celular
2.
Proc Natl Acad Sci U S A ; 120(40): e2311707120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738292

RESUMO

The immune isolation of cells within devices has the potential to enable long-term protein replacement and functional cures for a range of diseases, without requiring immune suppressive therapy. However, a lack of vasculature and the formation of fibrotic capsules around cell immune-isolating devices limits oxygen availability, leading to hypoxia and cell death in vivo. This is particularly problematic for pancreatic islet cells that have high O2 requirements. Here, we combine bioelectronics with encapsulated cell therapies to develop the first wireless, battery-free oxygen-generating immune-isolating device (O2-Macrodevice) for the oxygenation and immune isolation of cells in vivo. The system relies on electrochemical water splitting based on a water-vapor reactant feed, sustained by wireless power harvesting based on a flexible resonant inductive coupling circuit. As such, the device does not require pumping, refilling, or ports for recharging and does not generate potentially toxic side products. Through systematic in vitro studies with primary cell lines and cell lines engineered to secrete protein, we demonstrate device performance in preventing hypoxia in ambient oxygen concentrations as low as 0.5%. Importantly, this device has shown the potential to enable subcutaneous (SC) survival of encapsulated islet cells, in vivo in awake, freely moving, immune-competent animals. Islet transplantation in Type I Diabetes represents an important application space, and 1-mo studies in immune-competent animals with SC implants show that the O2-Macrodevice allows for survival and function of islets at high densities (~1,000 islets/cm2) in vivo without immune suppression and induces normoglycemia in diabetic animals.


Assuntos
Hipóxia , Oxigênio , Animais , Hipóxia/terapia , Morte Celular , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos
3.
J Am Chem Soc ; 142(46): 19715-19721, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141568

RESUMO

Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks. This dynamic fiber precursor (DFP) is directly drawn by pultrusion into HA fibers that display high aspect ratios, ranging from 4 to 20 µm in diameter and up to ∼10 m in length. Dynamic rheology measurements of the DFP and tensile testing of the resulting fibers reveal design considerations to tune the propensity for fiber formation and fiber mechanical properties, including the effect of polymer structure and concentration on elastic modulus, tensile strength, and ultimate strain. The materials' humidity-responsive contractile behavior, a unique property of spider silks rarely observed in synthetic materials, highlights possibilities for further biomimetic and stimulus-responsive fiber applications. This work demonstrates that chemical modification of dynamic interactions can be used to tune the mechanical properties of pultrusion-based fibers and their precursors.


Assuntos
Ácido Hialurônico/química , Polietilenoglicóis/química , Materiais Biomiméticos/química , Módulo de Elasticidade , Umidade , Reologia , Resistência à Tração
4.
Nat Biomed Eng ; 4(8): 814-826, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32231313

RESUMO

The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes <0.8 µm prevented their infiltration by immune cells. A synthetic polymer coating prevented fibrosis and was necessary for the long-term function of the device. For >130 days, the device supported human cells engineered to secrete erythropoietin in immunocompetent mice, as well as transgenic human cells carrying an inducible gene circuit for the on-demand secretion of erythropoietin. Pancreatic islets from rats encapsulated in the device and implanted in diabetic mice restored normoglycaemia in the mice for over 75 days. The biocompatible device provides a retrievable solution for the transplantation of engineered cells in the absence of immunosuppression.


Assuntos
Transplante de Células/métodos , Sobrevivência de Enxerto , Próteses e Implantes , Animais , Cápsulas , Transplante de Células/instrumentação , Materiais Revestidos Biocompatíveis , Diabetes Mellitus Experimental/terapia , Desenho de Equipamento , Eritropoetina/genética , Eritropoetina/metabolismo , Reação a Corpo Estranho/prevenção & controle , Células HEK293 , Humanos , Ilhotas Pancreáticas , Transplante das Ilhotas Pancreáticas/instrumentação , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Permeabilidade , Ratos , Transplante Heterólogo
5.
Adv Mater ; 31(8): e1805116, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30609147

RESUMO

Noninvasive aerosol inhalation is an established method of drug delivery to the lung, and remains a desirable route for nucleic-acid-based therapeutics. In vitro transcribed (IVT) mRNA has broad therapeutic applicability as it permits temporal and dose-dependent control of encoded protein expression. Inhaled delivery of IVT-mRNA has not yet been demonstrated and requires development of safe and effective materials. To meet this need, hyperbranched poly(beta amino esters) (hPBAEs) are synthesized to enable nanoformulation of stable and concentrated polyplexes suitable for inhalation. This strategy achieves uniform distribution of luciferase mRNA throughout all five lobes of the lung and produces 101.2 ng g-1 of luciferase protein 24 h after inhalation of hPBAE polyplexes. Importantly, delivery is localized to the lung, and no luminescence is observed in other tissues. Furthermore, using an Ai14 reporter mouse model it is identified that 24.6% of the total lung epithelial cell population is transfected after a single dose. Repeat dosing of inhaled hPBAE-mRNA generates consistent protein production in the lung, without local or systemic toxicity. The results indicate that nebulized delivery of IVT-mRNA facilitated by hPBAE vectors may provide a clinically relevant delivery system to lung epithelium.


Assuntos
Células Epiteliais/metabolismo , Luciferases/genética , Nanopartículas/química , Polímeros/química , RNA Mensageiro/química , Administração por Inalação , Animais , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Células Epiteliais/citologia , Feminino , Técnicas de Transferência de Genes , Terapia Genética/métodos , Concentração de Íons de Hidrogênio , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , RNA Mensageiro/administração & dosagem , RNA Mensageiro/efeitos adversos , RNA Mensageiro/metabolismo , Distribuição Tecidual , Transfecção/métodos
6.
Sci Rep ; 7: 45681, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374831

RESUMO

The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40-70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2-5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20-24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45-184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful 'liquid biopsy' that may complement or partially replace bone marrow aspiration.


Assuntos
Anticorpos/metabolismo , Mieloma Múltiplo/patologia , Plasmócitos/citologia , Sindecana-1/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Humanos , Dispositivos Lab-On-A-Chip , Mieloma Múltiplo/metabolismo
7.
Nano Lett ; 17(3): 2015-2020, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28152589

RESUMO

Implantable sensors that detect biomarkers in vivo are critical for early disease diagnostics. Although many colloidal nanomaterials have been developed into optical sensors to detect biomolecules in vitro, their application in vivo as implantable sensors is hindered by potential migration or clearance from the implantation site. One potential solution is incorporating colloidal nanosensors in hydrogel scaffold prior to implantation. However, direct contact between the nanosensors and hydrogel matrix has the potential to disrupt sensor performance. Here, we develop a hollow-microcapsule-based sensing platform that protects colloidal nanosensors from direct contact with hydrogel matrix. Using microfluidics, colloidal nanosensors were encapsulated in polyethylene glycol microcapsules with liquid cores. The microcapsules selectively trap the nanosensors within the core while allowing free diffusion of smaller molecules such as glucose and heparin. Glucose-responsive quantum dots or gold nanorods or heparin-responsive gold nanorods were each encapsulated. Microcapsules loaded with these sensors showed responsive optical signals in the presence of target biomolecules (glucose or heparin). Furthermore, these microcapsules can be immobilized into biocompatible hydrogel as implantable devices for biomolecular sensing. This technique offers new opportunities to extend the utility of colloidal nanosensors from solution-based detection to implantable device-based detection.


Assuntos
Coloides/química , Microfluídica/métodos , Nanoestruturas/química , Polietilenoglicóis/química , Anticoagulantes/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Cápsulas/química , Difusão , Desenho de Equipamento , Glucose/análise , Heparina/análise , Microfluídica/instrumentação , Pontos Quânticos/química
8.
Adv Healthc Mater ; 6(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27976536

RESUMO

The surface modification of implantable biomaterials with zwitterionic phosphorylcholine polymer is demonstrated through mussel-mimetic catecholamine polymer thin films. Using this method, the surfaces of alginate hydrogel microspheres and polystyrene microbeads, a model material known to produce robust foreign body responses and fibrosis, are successfully modified to reduce the tissue reaction by reducing the fibrosis in immunocompetent C57BL/6J mice.


Assuntos
Catecolaminas , Materiais Revestidos Biocompatíveis , Membranas Artificiais , Fosforilcolina , Animais , Catecolaminas/química , Catecolaminas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacologia , Fibrose , Reação a Corpo Estranho/prevenção & controle , Camundongos , Fosforilcolina/química , Fosforilcolina/farmacologia
9.
PLoS One ; 10(9): e0137550, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355958

RESUMO

In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.


Assuntos
Neutrófilos/imunologia , Neutrófilos/metabolismo , Próteses e Implantes/efeitos adversos , Animais , Citocinas/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fibrose , Mediadores da Inflamação/metabolismo , Contagem de Leucócitos , Camundongos , Modelos Animais , Infiltração de Neutrófilos/imunologia , Fagocitose/imunologia
10.
Nano Lett ; 15(5): 3254-60, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25915708

RESUMO

Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes for nanofiltration, desalination, and other separation processes.


Assuntos
Grafite/química , Membranas/química , Água/química , Íons/química , Membranas/ultraestrutura , Simulação de Dinâmica Molecular , Nanoporos/ultraestrutura
11.
Sci Rep ; 3: 2329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23900203

RESUMO

Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.


Assuntos
Proteínas Sanguíneas/metabolismo , Fracionamento Celular/métodos , Citometria de Fluxo/métodos , Microfluídica/métodos , Neutrófilos/citologia , Neutrófilos/fisiologia , Células Cultivadas , Humanos
12.
Proc Natl Acad Sci U S A ; 109(48): 19626-31, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150586

RESUMO

Capture and isolation of flowing cells and particulates from body fluids has enormous implications in diagnosis, monitoring, and drug testing, yet monovalent adhesion molecules used for this purpose result in inefficient cell capture and difficulty in retrieving the captured cells. Inspired by marine creatures that present long tentacles containing multiple adhesive domains to effectively capture flowing food particulates, we developed a platform approach to capture and isolate cells using a 3D DNA network comprising repeating adhesive aptamer domains that extend over tens of micrometers into the solution. The DNA network was synthesized from a microfluidic surface by rolling circle amplification where critical parameters, including DNA graft density, length, and sequence, could readily be tailored. Using an aptamer that binds to protein tyrosine kinase-7 (PTK7) that is overexpressed on many human cancer cells, we demonstrate that the 3D DNA network significantly enhances the capture efficiency of lymphoblast CCRF-CEM cells over monovalent aptamers and antibodies, yet maintains a high purity of the captured cells. When incorporated in a herringbone microfluidic device, the 3D DNA network not only possessed significantly higher capture efficiency than monovalent aptamers and antibodies, but also outperformed previously reported cell-capture microfluidic devices at high flow rates. This work suggests that 3D DNA networks may have broad implications for detection and isolation of cells and other bioparticles.


Assuntos
DNA/fisiologia , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Humanos , Microfluídica
13.
Nat Nanotechnol ; 6(8): 524-31, 2011 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-21765401

RESUMO

The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular , Fator de Crescimento Derivado de Plaquetas/análise , Fator de Crescimento Derivado de Plaquetas/metabolismo
14.
J Vis Exp ; (48)2011 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-21372779

RESUMO

Lateral displacement of cells orthogonal to a flow stream by rolling on asymmetric receptor patterns presents an opportunity for development of new devices for label-free separation and analysis of cells. Such devices may use lateral displacement for continuous-flow separation, or receptor patterns that modulate adhesion to distinguish between different cell phenotypes or levels of receptor expression. Understanding the nature of cell rolling trajectories on receptor-patterned substrates is necessary for engineering of the substrates and design of such devices. Here, we demonstrate a protocol for studying cell rolling trajectories on asymmetric receptor patterns that support cell rolling adhesion. Well-defined, µm-scale patterns of P-selectin receptors were fabricated using microcontact printing on gold-coated slides that were incorporated in a flow chamber. HL60 cells expressing the PSGL-1 ligand were flowed across a field of patterned lines and visualized on an inverted bright field microscope. The cells rolled and tracked along the inclined edges of the patterns, resulting in lateral deflection. Each cell typically rolled for a certain distance along the pattern edges (defined as the edge tracking length), detached from the edge, and reattached to a downstream pattern. Although this detachment makes it difficult to track the entire trajectory of a cell from entrance to exit in the flow chamber, particle-tracking software was used to analyze and yield the rolling trajectories of the cells during the time when they were moving on a single receptor-patterned line. The trajectories were then examined to obtain distributions of cell rolling velocities and the edge tracking lengths for each cell for different patterns. This protocol is useful for quantifying cell rolling trajectories on receptor patterns and relating these to engineering parameters such as pattern angle and shear stress. Such data will be useful for design of microfluidic devices for label-free cell separation and analysis.


Assuntos
Movimento Celular/fisiologia , Técnicas Citológicas/métodos , Adesão Celular/fisiologia , Técnicas Citológicas/instrumentação , Células HL-60 , Humanos , Glicoproteínas de Membrana/biossíntese , Microscopia/métodos , Selectina-P/química , Polietilenoglicóis/química
15.
Langmuir ; 27(1): 240-9, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21141947

RESUMO

The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand-receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm(2)), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P-selectin-patterned substrates with a specified edge inclination angle. The prediction of lateral displacement in the range of 200 µm within a 1 cm separation length supports the feasibility of label-free cell separation via asymmetric receptor patterns in microfluidic devices.


Assuntos
Movimento Celular , Selectina-P/metabolismo , Rastreamento de Células , Células HL-60 , Humanos , Microtecnologia , Distribuição de Poisson , Polietilenoglicóis/química , Estresse Mecânico
16.
Biophys J ; 99(12): 3870-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21156128

RESUMO

Cell rolling on the vascular endothelium plays an important role in trafficking of leukocytes, stem cells, and cancer cells. We describe a semianalytical model of cell rolling that focuses on the microvillus as the unit of cell-substrate interaction and integrates microvillus mechanics, receptor clustering, force-dependent receptor-ligand kinetics, and cortical tension that enables incorporation of cell body deformation. Using parameters obtained from independent experiments, the model showed excellent agreement with experimental studies of neutrophil rolling on P-selectin and predicted different regimes of cell rolling, including spreading of the cells on the substrate under high shear. The cortical tension affected the cell-surface contact area and influenced the rolling velocity, and modulated the dependence of rolling velocity on microvillus stiffness. Moreover, at the same shear stress, microvilli of cells with higher cortical tension carried a greater load compared to those with lower cortical tension. We also used the model to obtain a scaling dependence of the contact radius and cell rolling velocity under different conditions of shear stress, cortical tension, and ligand density. This model advances theoretical understanding of cell rolling by incorporating cortical tension and microvillus extension into a versatile, semianalytical framework.


Assuntos
Migração e Rolagem de Leucócitos/fisiologia , Modelos Biológicos , Estresse Mecânico , Fenômenos Biomecânicos/fisiologia , Ligantes , Microvilosidades/metabolismo , Selectina-P/metabolismo , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...