Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 63: 103161, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33348090

RESUMO

BACKGROUND: Besides long-term trans-differentiation into neural cells, benefits of stem cell therapy (SCT) in ischemic stroke may include secretion of protective factors, which partly reflects extracellular vesicle (EVs) released by stem cell. However, the mechanism(s) by which stem cells/EVs limit stroke injury have yet to be fully defined. METHODS: We evaluated the protection effect of human placenta mesenchymal stem cells (hPMSC) as a potential form of SCT in experimental ischemic stroke 'transient middle cerebral artery occusion (MCAO)/reperfusion' mice model. FINDINGS: We found for the first time that intraperitoneal administration of hPMSCs or intravenous hPMSC-derived EVs, given at the time of reperfusion, significantly protected the ipsilateral hemisphere from ischemic injury. This protection was associated with significant restoration of normal blood flow to the post-MCAO brain. More importantly, EVs derived from hPMSC promote paracrine-based protection of SCT in the MCAO model in a cholesterol/lipid-dependent manner. INTERPRETATION: Together, our results demonstrated beneficial effects of hPMSC/EVs in experimental stroke models which could permit the rapid "translation" of these cells into clinical trials in the near-term.


Assuntos
Circulação Cerebrovascular , Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Barreira Hematoencefálica/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Oxigênio/metabolismo , Permeabilidade , Gravidez , Acidente Vascular Cerebral/etiologia
2.
Sleep Med ; 67: 278-285, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32057628

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is a sleep disorder caused by transient obstruction of the upper airway and results in intermittent hypoxia, sleep fragmentation, sympathetic nervous system activation, and arousal which can have an adverse effect on cardiovascular disease. It is theorized that OSA might intensify stroke injury. Our goal here was to develop a new model of experimental OSA and test its ability to aggravate behavioral and morphological outcomes following transient brain ischemia/reperfusion. METHODS: We used a 3D printed OSA device to expose C57BL6 mice to 3 h of OSA (obstructive apnea index of 20 events per hour) for three days. These mice were then subjected to ischemia/reperfusion using the middle cerebral artery occlusion model (MCAO) stroke and examined for overall survival, infarct size and neurological scoring. RESULTS: We found that OSA transiently decreased respiration and reduced oxygen saturation with bradycardia and tachycardia typical of human responses during apneic events. Brain injury from MCAO was significantly increased by OSA as measured by infarct size and location as well as by intensification of neurological deficits; mortality following MCAO was also increased in OSA animals. CONCLUSIONS: Our findings suggest that our new model of OSA alters respiratory and cardiovascular physiological functions and is associated with enhanced ischemia/reperfusion mediated injury in our non-invasive, OSA intensified model of stroke.


Assuntos
Isquemia Encefálica/complicações , Transtornos Cerebrovasculares , Artéria Cerebral Média/fisiopatologia , Apneia Obstrutiva do Sono/complicações , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
3.
Liver Transpl ; 26(1): 100-112, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742878

RESUMO

Biliary complications (strictures and leaks) represent major limitations in living donor liver transplantation. Mesenchymal stem cells (MSCs) are a promising modality to prevent biliary complications because of immunosuppressive and angiogenic properties. Our goal was to evaluate the safety of adipose-derived MSC delivery to biliary anastomoses in a porcine model. Secondary objectives were defining the optimal method of delivery (intraluminal versus extraluminal) and to investigate MSC engraftment, angiogenesis, and fibrosis. Pigs were divided into 3 groups. Animals underwent adipose collection, MSC isolation, and expansion. Two weeks later, animals underwent bile duct transection, reanastomosis, and stent insertion. Group 1 received plastic stents wrapped in unseeded Vicryl mesh. Group 2 received stents wrapped in MSC-seeded mesh. Group 3 received unwrapped stents with the anastomosis immersed in an MSC suspension. Animals were killed 1 month after stent insertion when cholangiograms and biliary tissue were obtained. Serum was collected for liver biochemistries. Tissue was used for hematoxylin-eosin and trichrome staining and immunohistochemistry for MSC markers (CD44 and CD34) and for a marker of neoangiogenesis (CD31). There were no intraoperative complications. One pig died on postoperative day 3 due to acute cholangitis. All others recovered without complications. Cholangiography demonstrated no biliary leaks and minimal luminal narrowing. Surviving animals exhibited no symptoms, abnormal liver biochemistries, or clinically significant biliary stricturing. Group 3 showed significantly greater CD44 and CD34 staining, indicating MSC engraftment. Fibrosis was reduced at the anastomotic site in group 3 based on trichrome stain. CD31 staining of group 3 was more pronounced, supporting enhanced neoangiogenesis. In conclusion, adipose-derived MSCs were safely applied to biliary anastomoses. MSCs were locally engrafted within the bile duct and may have beneficial effects in terms of fibrosis and angiogenesis.


Assuntos
Transplante de Fígado , Células-Tronco Mesenquimais , Animais , Ductos Biliares/cirurgia , Humanos , Imersão , Doadores Vivos , Complicações Pós-Operatórias , Stents , Suínos
4.
J 3D Print Med ; 3(2): 83-93, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31258936

RESUMO

3D printing is an additive manufacturing technology, which permits innovative approaches for incorporating antibiotics into 3D printed constructs. Antibiotic-incorporating applications in medicine have included medical implants, prostheses, along with procedural and surgical instruments. 3D-printed antibiotic-impregnated devices offer the advantages of increased surface area for drug distribution, sequential layers of antibiotics produced through layer-by-layer fabrication, and the ability to rapidly fabricate constructs based on patient-specific anatomies. To date, fused deposition modeling has been the main 3D printing method used to incorporate antibiotics, although inkjet and stereolithography techniques have also been described. This review offers a state-of-the-art summary of studies that incorporate antibiotics into 3D-printed constructs and summarizes the rationale, challenges, and future directions for the potential use of this technology in patient care.

5.
Front Immunol ; 10: 1455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316509

RESUMO

Microparticles (MP) are regarded both as biomarkers and mediators of many forms of pathology, including neurovascular inflammation. Here, we characterized vectorial release of apical and basolateral MPs (AMPs and BMPs) from control and TNF-α/IFN-γ treated human brain endothelial monolayers, studied molecular composition of AMPs and BMPs and characterized molecular pathways regulating AMP and BMP release. The effects of AMPs and BMPs on blood-brain barrier properties and human brain microvascular smooth muscle tonic contractility in vitro were also evaluated. We report that human brain microvascular endothelial cells release MPs both apically and basolaterally with both AMP and BMP release significantly increased following inflammatory cytokine challenge (3.5-fold and 3.9-fold vs. control, respectively). AMPs and BMPs both carry proteins derived from parent cells including those in BBB junctions (Claudin-1, -3, -5, occludin, VE-cadherin). AMPs and BMPs represent distinct populations whose release appears to be regulated by distinctly separate molecular pathways, which depend on signaling from Rho-associated, coiled-coil containing protein kinase (ROCK), calpain as well as cholesterol depletion. AMPs and BMPs modulate functions of neighboring cells including BBB endothelial solute permeability and brain vascular smooth muscle contractility. While control AMPs enhanced brain endothelial barrier, cytokine-induced AMPs impaired BBB. Cytokine-induced but not control BMPs significantly impaired human brain smooth muscle contractility as early as day 1. Taken together these results indicate that AMPs and BMPs may contribute to neurovascular inflammatory disease progression both within the circulation (AMP) and in the brain parenchyma (BMP).


Assuntos
Encéfalo/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/farmacologia , Interferon gama/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Antígenos CD/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Caderinas/metabolismo , Células Cultivadas , Claudinas/metabolismo , Humanos , Inflamação/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Ocludina/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
6.
N Engl J Med ; 380(20): 1981-1982, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31091396

Assuntos
Organoides , Humanos
7.
Bioengineering (Basel) ; 6(1)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744131

RESUMO

Three-dimensional (3D) printing is an additive manufacturing method that holds great potential in a variety of future patient-specific medical technologies. This project validated a novel crosslinked polyvinyl alcohol (XL-PVA) 3D printed stent infused with collagen, human placental mesenchymal stem cells (PMSCs), and cholangiocytes. The biofabrication method in the present study examined 3D printing and collagen injection molding for rapid prototyping of customized living biliary stents with clinical applications in the setting of malignant and benign bile duct obstructions. XL-PVA stents showed hydrophilic swelling and addition of radiocontrast to the stent matrix improved radiographic opacity. Collagen loaded with PMSCs contracted tightly around hydrophilic stents and dense choloangiocyte coatings were verified through histology and fluorescence microscopy. It is anticipated that design elements used in these stents may enable appropriate stent placement, provide protection of the stent-stem cell matrix against bile constituents, and potentially limit biofilm development. Overall, this approach may allow physicians to create personalized bio-integrating stents for use in biliary procedures and lays a foundation for new patient-specific stent fabrication techniques.

8.
Pharm Res ; 35(8): 155, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29869098

RESUMO

PURPOSE: Cell migration/invasion assays are widely used in commercial drug discovery screening. 3D printing enables the creation of diverse geometric restrictive barrier designs for use in cell motility studies, permitting on-demand assays. Here, the utility of 3D printed cell exclusion spacers (CES) was validated as a cell motility assay. METHODS: A novel CES fit was fabricated using 3D printing and customized to the size and contour of 12 cell culture plates including 6 well plates of basal human brain vascular endothelial (D3) cell migration cells compared with 6 well plates with D3 cells challenged with 1uM cytochalasin D (Cyto-D), an F-actin anti-motility drug. Control and Cyto-D treated cells were monitored over 3 days under optical microscopy. RESULTS: Day 3 cell migration distance for untreated D3 cells was 1515.943µm ± 10.346µm compared to 356.909µm ± 38.562µm for the Cyt-D treated D3 cells (p < 0.0001). By day 3, untreated D3 cells reached confluency and completely filled the original voided spacer regions, while the Cyt-D treated D3 cells remained significantly less motile. CONCLUSIONS: Cell migration distances were significantly reduced by Cyto-D, supporting the use of 3D printing for cell exclusion assays. 3D printed CES have great potential for studying cell motility, migration/invasion, and complex multi-cell interactions.


Assuntos
Técnicas de Cultura de Células/instrumentação , Ensaios de Migração Celular/instrumentação , Células Endoteliais/citologia , Impressão Tridimensional , Encéfalo/citologia , Linhagem Celular , Movimento Celular , Desenho de Equipamento , Humanos , Técnicas de Cultura de Tecidos/instrumentação
9.
J Oral Maxillofac Surg ; 76(7): 1562.e1-1562.e5, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29679585

RESUMO

PURPOSE: After cleft lip and palate surgical procedures, patients often need nostril supports to help the reconstructed nostrils retain their shape during healing. Many postoperative nasal stents use a one-size-fits-all approach, in which a standard rubber tube retainer is trimmed and used to support the healing nares. The purpose of this study was to examine photogrammetry and 3-dimensional (3D) printing as a fabrication tool for postoperative patient-specific nasal supports that can be loaded with bioactive agents for localized delivery. MATERIALS AND METHODS: A "normal" right nostril injection mold was prepared from a left-sided unilateral cleft defect, and the negative-space impression was modeled using a series of photographs taken at different rotation angles with a commercial mobile phone camera. These images were "stitched" together using photogrammetry software, and the computer-generated models were reflected, joined, and digitally sculpted to generate hollow bilateral supports. Three-dimensional prints were coated with polyvinylpyrrolidone-penicillin and validated for their ability to inhibit Escherichia coli using human blood agar diffusion assays. RESULTS: The results showed that our approach had a high level of contour replication and the antibiotic coating was able to inhibit bacterial growth with a mean zone of inhibition of 15.15 ± 0.99 mm (n = 9) (P < .0001) in disc diffusion assays. CONCLUSIONS: Consumer-grade 3D printing displays potential as a fabrication method for postoperative cleft bilateral nasal supports and may support the surgically reconstructed internal contours. The results of this study suggest that such types of bioactive 3D prints may have potential applications in personalized drug-delivery systems and medical devices.


Assuntos
Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Stents Farmacológicos , Rinoplastia/métodos , Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Humanos , Modelos Anatômicos , Penicilinas/administração & dosagem , Excipientes Farmacêuticos/administração & dosagem , Fotogrametria , Povidona/administração & dosagem , Impressão Tridimensional , Desenho de Prótese
10.
3D Print Addit Manuf ; 5(1): 29-35, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31008143

RESUMO

Three-dimensional (3D) printing holds tremendous potential as a tool for patient-specific devices. This proof-of- concept study demonstrated the feasibility, antimicrobial properties, and computed tomography(CT) imaging characteristics of iodine/polyvinyl alcohol (PVA) 3D meshes and stents. Under scanning electron microscopy, cross-linked PVA displays smoother and more compacted filament arrangements. X-ray and transaxial CT images of iodized PVA vascular stents show excellent visibility and significantly higher Hounsfield units of radiopacity than control prints. Three-dimensional PVA prints stabilized by glutaraldehyde cross-linking and loaded with iodine through sublimation significantly suppressed Escherichia coli and Staphylococcus aureus growth in human blood agar disk diffusion assays. It is suggested that PVA 3D printing with iodine represents an important new synthetic platform for generating a wide variety of antimicrobial and high-visibility devices.

11.
3D Print Med ; 4(1): 9, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30649646

RESUMO

BACKGROUND: Three-dimensional (3D) cell cultures and 3D bioprinting have recently gained attention based on their multiple advantages over two-dimensional (2D) cell cultures, which have less translational potential to recapitulate human physiology. 3D scaffold supports, cell aggregate systems and hydrogels have been shown to accurately mimic native tissues and support more relevant cell-cell interactions for studying effects of drugs and bioactive agents on cells in 3D. The development of cost-effective, high-throughput and scaffold-free microtissue assays remains challenging. In the present study, consumer grade 3D printing was examined as a fabrication method for creation of high-throughput scaffold-free 3D spheroidal microtissues. RESULTS: Consumer grade 3D printing was capable of forming 96-well cell culture inserts to create scaffold-free microtissues in liquid suspensions. The inserts were seeded with human glioblastoma, placental-derived mesenchymal stem cells, and intestinal smooth muscle cells. These inserts allowed for consistent formation of cell density-controllable microtissues that permit screening of bioactive agents. CONCLUSION: A variety of different cell types, co-cultures, and drugs may be evaluated with this 3D printed microtissue insert. It is suggested that the microtissue inserts may benefit 3D cell culture researchers as an economical assay solution with applications in pharmaceuticals, disease modeling, and tissue-engineering.

12.
3D Print Med ; 4(1): 13, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30649673

RESUMO

BACKGROUND: Selected medical implants and other 3D printed constructs could potentially benefit from the ability to incorporate contrast agents into their structure. The purpose of the present study is to create 3D printed surgical meshes impregnated with iodinated, gadolinium, and barium contrast agents and characterize their computed tomography (CT) imaging characteristics. Commercial fused deposition layering 3D printing was used to construct surgical meshes impregnated with imaging contrast agents in an in vitro model. Polycaprolactone (PCL) meshes were printed containing iodinated, gadolinium, or barium contrast; control PCL meshes without contrast were also fabricated. The three different contrast agents were mixed with PCL powder and directly loaded into the 3D printer. CT images of the three contrast-containing meshes and the control meshes were acquired and analyzed using small elliptical regions of interest to record the Hounsfield units (HU) of each mesh. Subsequently, to test their solubility and sustainability, the contrast-containing meshes were placed in a 37 °C agar solution for 7 days and imaged by CT at days 1, 3 and 7. RESULTS: All 3D printed meshes were visible on CT. Iodinated contrast meshes had the highest attenuation (2528 mean HU), significantly higher than both and gadolinium (1178 mean HU) and barium (592 mean HU) containing meshes. Only barium meshes sustained their visibility in the agar solution; the iodine and gadolinium meshes were poorly perceptible and had significantly lower mean HU compared to their pre-agar solution imaging, with iodine and gadolinium present in the adjacent agar at day 7 CT. CONCLUSION: 3D prints embedded with contrast materials through this method displayed excellent visibility on CT; however, only barium mesh maintained visibility after 7 days incubation on agar at human body temperature. This method of 3D printing with barium may have potential applications in a variety of highly personalized and CT visible medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA