Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0062624, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162542

RESUMO

Wound infections, exacerbated by the prevalence of antibiotic-resistant bacterial pathogens, necessitate innovative antimicrobial approaches. Polymicrobial infections, often involving Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), present challenges due to biofilm formation and antibiotic resistance. Hypochlorous acid (HOCl), a potent antimicrobial agent, holds promise as an alternative therapy. An electrochemical bandage (e-bandage) that generates HOCl in situ via precise polarization controlled by a miniaturized potentiostat was evaluated for the treatment of murine wound biofilm infections containing both P. aeruginosa with "difficult-to-treat" resistance and MRSA. Previously, HOCl-producing e-bandage was shown to reduce murine wound biofilms containing P. aeruginosa alone. Here, in 5-mm excisional skin wounds containing 48-h biofilms comprising MRSA and P. aeruginosa combined, polarized e-bandage treatment reduced MRSA by 1.1 log10 CFU/g (P = 0.026) vs non-polarized e-bandage treatment (no HOCl production), and 1.4 log10 CFU/g (0.0015) vs Tegaderm only controls; P. aeruginosa was similarly reduced by 1.6 log10 CFU/g (P = 0.0032) and 1.6 log10 CFU/g (P = 0.0015), respectively. For wounds infected with MRSA alone, polarized e-bandage treatment reduced bacterial load by 1.1 log10 CFU/g (P = 0.0048) and 1.3 log10 CFU/g (P = 0.0048) compared with non-polarized e-bandage and Tegaderm only, respectively. The e-bandage treatment did not negatively impact wound healing or cause tissue toxicity. The addition of systemic antibiotics did not enhance the antimicrobial efficacy of e-bandages. This study provides additional evidence for the HOCl-producing e-bandage as a novel antimicrobial strategy for managing wound infections, including in the context of antibiotic resistance and polymicrobial infections. IMPORTANCE: New approaches are needed to combat the rise of antimicrobial-resistant infections. The HOCl-producing electrochemical bandage (e-bandage) leverages in situ generation of HOCl, a natural biocide, for broad-spectrum killing of wound pathogens. Unlike traditional therapies that may exhibit limited activity against biofilms and antimicrobial-resistant organisms, the e-bandage offers a potent, standalone solution that does not contribute to further resistance or require adjunctive antibiotic therapy. Here, we show the ability of the e-bandage to address polymicrobial infection by antimicrobial resistant clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa, two commonly isolated, co-infecting wound pathogens. Effectiveness of the HOCl-producing e-bandage in reducing pathogen load while minimizing tissue toxicity and avoiding the need for systemic antibiotics underscores its potential as a tool in managing complex wound infections.

2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585771

RESUMO

Electrochemical bandages (e-bandages) can be applied to biofilm-infected wounds to generate reactive oxygen species, such as hypochlorous acid (HOCl) or hydrogen peroxide (H 2 O 2 ). The e-bandage-generated HOCl or H 2 O 2 kills biofilms in vitro and in infected wounds on mice. The HOCl-generating e-bandage is more active against biofilms in vitro , although this distinction is less apparent in vivo . The H 2 O 2 -generating e-bandage, more than the HOCl-generating e-bandage, is associated with improved healing of infected wounds. A strategy in which H 2 O 2 and HOCl are generated alternately-for dual action-was explored. The goal was to develop a programmable multimodal wearable potentiostat (PMWP) that could be programmed to generate HOCl or H 2 O 2 , as needed. An ultralow-power microcontroller unit managed operation of the PMWP. The system was operated with a 260-mAh capacity coin battery and weighed 4.6 grams, making it suitable for small animal experiments or human use. The overall cost of a single wearable potentiostat was $6.50 (USD). The device was verified using established electrochemical systems and functioned comparably to a commercial potentiostat. To determine antimicrobial effectiveness, PMWP-controlled e-bandages were tested against clinical isolates of four prevalent chronic wound bacterial pathogens, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Acinetobacter baumannii , and Enterococcus faecium , and one fungal pathogen of emerging concern, Candida auris . PMWP-controlled e-bandages exhibited broad-spectrum activity against biofilms of all study isolates tested when programmed to deliver HOCl followed by H 2 O 2 . These results show that the PMWP operates effectively and is suitable for animal testing.

3.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562889

RESUMO

Wound infections, exacerbated by the prevalence of antibiotic-resistant bacterial pathogens, necessitate innovative antimicrobial approaches. Polymicrobial infections, often involving Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), present formidable challenges due to biofilm formation and antibiotic resistance. Hypochlorous acid (HOCl), a potent antimicrobial agent produced naturally by the immune system, holds promise as an alternative therapy. An electrochemical bandage (e-bandage) that generates HOCl in situ was evaluated for treatment of murine wound biofilm infections containing both MRSA and P. aeruginosa with "difficult-to-treat" resistance. Previously, the HOCl-producing e-bandage was shown to reduce wound biofilms containing P. aeruginosa alone. Compared to non-polarized e-bandage (no HOCl production) and Tegaderm only controls, the polarized e-bandages reduced bacterial loads in wounds infected with MRSA plus P. aeruginosa (MRSA: vs Tegaderm only - 1.4 log10 CFU/g, p = 0.0015, vs. non-polarized - 1.1 log10 CFU/g, p = 0.026. P. aeruginosa: vs Tegaderm only - 1.6 log10 CFU/g, p = 0.0015, vs non-polarized - 1.6 log10 CFU/g, p = 0.0032), and MRSA alone (vs Tegaderm only - 1.3 log10 CFU/g, p = 0.0048, vs. non-polarized - 1.1 log10 CFU/g, p = 0.0048), without compromising wound healing or causing tissue toxicity. Addition of systemic antibiotics did not enhance the antimicrobial efficacy of e-bandages, highlighting their potential as standalone therapies. This study provides additional evidence for the HOCl-producing e-bandage as a novel antimicrobial strategy for managing wound infections, including in the context of antibiotic resistance and polymicrobial infections.

4.
Antimicrob Agents Chemother ; 68(2): e0121623, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214514

RESUMO

The growing threat of antibiotic-resistant bacterial pathogens necessitates the development of alternative antimicrobial approaches. This is particularly true for chronic wound infections, which commonly harbor biofilm-dwelling bacteria. A novel electrochemical bandage (e-bandage) delivering low-levels of hypochlorous acid (HOCl) was evaluated against Pseudomonas aeruginosa murine wound biofilms. 5 mm skin wounds were created on the dorsum of mice and infected with 106 colony-forming units (CFU) of P. aeruginosa. Biofilms were formed over 2 days, after which e-bandages were placed on the wound beds and covered with Tegaderm. Mice were administered Tegaderm-only (control), non-polarized e-bandage (no HOCl production), or polarized e-bandage (using an HOCl-producing potentiostat), with or without systemic amikacin. Purulence and wound areas were measured before and after treatment. After 48 hours, wounds were harvested for bacterial quantification. Forty-eight hours of polarized e-bandage treatment resulted in mean biofilm reductions of 1.4 log10 CFUs/g (P = 0.0107) vs non-polarized controls and 2.2 log10 CFU/g (P = 0.004) vs Tegaderm-only controls. Amikacin improved CFU reduction in Tegaderm-only (P = 0.0045) and non-polarized control groups (P = 0.0312) but not in the polarized group (P = 0.3876). Compared to the Tegaderm-only group, there was less purulence in the polarized group (P = 0.009). Wound closure was neither impeded nor improved by either polarized or non-polarized e-bandage treatment. Concurrent amikacin did not impact wound closure or purulence. In conclusion, an HOCl-producing e-bandage reduced P. aeruginosa in wound biofilms with no impairment in wound healing, representing a promising antibiotic-free approach for addressing wound infection.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Camundongos , Pseudomonas aeruginosa , Ácido Hipocloroso , Amicacina , Infecções por Pseudomonas/microbiologia , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA