Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101254, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38745893

RESUMO

A major limitation of gene therapy for sickle cell disease (SCD) is the availability and access to a potentially curative one-time treatment, due to high treatment costs. We have developed a high-titer bifunctional lentiviral vector (LVV) in a vector backbone that has reduced size, high vector yields, and efficient gene transfer to human CD34+ hematopoietic stem and progenitor cells (HSPCs). This LVV contains locus control region cores expressing an anti-sickling ßAS3-globin gene and two microRNA-adapted short hairpin RNA simultaneously targeting BCL11A and ZNF410 transcripts to maximally induce fetal hemoglobin (HbF) expression. This LVV induces high levels of anti-sickling hemoglobins (HbAAS3 + HbF), while concurrently decreasing sickle hemoglobin (HbS). The decrease in HbS and increased anti-sickling hemoglobin impedes deoxygenated HbS polymerization and red blood cell sickling at low vector copy per cell in transduced SCD patient CD34+ cells differentiated into erythrocytes. The dual alterations in red cell hemoglobins ameliorated the SCD phenotype in the SCD Berkeley mouse model in vivo. With high titer and enhanced transduction of HSPC at a low multiplicity of infection, this LVV will increase the number of patient doses of vector from production lots to decrease costs and help improve accessibility to gene therapy for SCD.

2.
Nat Commun ; 14(1): 5850, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730674

RESUMO

We previously reported initial clinical results of post-transcriptional gene silencing of BCL11A expression (NCT03282656) reversing the fetal to adult hemoglobin switch. A goal of this approach is to increase fetal hemoglobin (HbF) expression while coordinately reducing sickle hemoglobin (HbS) expression. The resulting combinatorial effect should prove effective in inhibiting HbS polymerization at lower physiologic oxygen values thereby mitigating disease complications. Here we report results of exploratory single-cell analysis of patients in which BCL11A is targeted molecularly and compare results with cells of patients treated with hydroxyurea (HU), the current standard of care. We use single-cell assays to assess HbF, HbS, oxygen saturation, and hemoglobin polymer content in RBCs for nine gene therapy trial subjects (BCLshmiR, median HbF% = 27.9) and compare them to 10 HU-treated subjects demonstrating high and comparable levels of HbF (HU High Responders, median HbF% = 27.0). All BCL11A patients achieved the primary endpoint for NCT03282656, which was defined by an absolute neutrophil count greater than or equal to 0.5 × 109 cells/L for three consecutive days, achieved within 7 weeks following infusion. Flow cytometric assessment of single-RBC HbF and HbS shows fewer RBCs with high HbS% that would be most susceptible to sickling in BCLshmiR vs. HU High Responders: median 42% of RBCs with HbS%>70% in BCLshmiR vs. 61% in HU High Responders (p = 0.004). BCLshmiR subjects also demonstrate more RBCs resistant to HbS polymerization at lower physiologic oxygen tension: median 32% vs. 25% in HU High Responders (p = 0.006). Gene therapy-induced BCL11A down-regulation reverses the fetal-to-adult hemoglobin switch and induces RBCs with higher HbF%, lower HbS%, and greater resistance to deoxygenation-induced polymerization in clinical trial subjects compared with a cohort of highly responsive hydroxyurea-treated subjects.


Assuntos
Hemoglobina Falciforme , Hidroxiureia , Adulto , Humanos , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Eritrócitos , Feto , Hemoglobina Fetal/genética , Fatores de Transcrição
3.
Nature ; 621(7978): 404-414, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648862

RESUMO

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Assuntos
Epitopos , Edição de Genes , Imunoterapia , Leucemia Mieloide Aguda , Animais , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD34/metabolismo , Transplante de Medula Óssea , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Hematopoese , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos/imunologia , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos Quiméricos/imunologia , Recidiva , Linfócitos T/imunologia , Condicionamento Pré-Transplante , Evasão Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292647

RESUMO

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35682182

RESUMO

An observational cross-sectional survey was planned and carried out to evaluate the economic impact of the SARS-CoV-2/COVID-19 pandemic on dental practices in Germany. An online-questionnaire was developed and previously calibrated by a group consisting of experts from dentists, lawyers, and business economists (n = 21; Intra-Class-Coefficient > 0.8). It consisted of four main categories: vital statistics, professional activity and practice structure, economic impact of the COVID-19 pandemic and validation and contextualization to avoid automated filling in. The questionnaire was administered anonymously to 9732 dentists in Germany, 4434 of whom opened it and 1496 of whom fully completed it. These results were evaluated and summarized. Respondents were divided into seven German economic macro areas. Difference in proportion among questionnaire items was evaluated with χ2 test or Fisher exact test appropriately. Linear trend analysis was performed among German macro areas. Ordinal multinomial linear regression analysis was run to evaluate the association with questionnaire items with respect to a collapse and/or quarantine measures due to a positive test/infection/disease of dental personnel or an increase in average monthly costs due to the pandemic. One-third experienced a collapse or quarantine measures of the predominantly self-employed participating dentists (92%). Small practices were less affected than larger ones. Average monthly costs increased sharply in all practice structures. The findings shall help to better manage future pandemics and provide information to policy makers. As the pandemic situation is still ongoing, the medium- and long-term economic impact should be further evaluated.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Estudos Transversais , Odontólogos , Alemanha/epidemiologia , Humanos , SARS-CoV-2 , Inquéritos e Questionários
7.
Nat Commun ; 13(1): 3476, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715403

RESUMO

Light is a powerful tool for controlling mechanical motion, as shown by numerous applications in the field of cavity optomechanics. Recently, small scale optomechanical circuits, connecting a few optical and mechanical modes, have been demonstrated in an ongoing push towards multi-mode on-chip optomechanical systems. An ambitious goal driving this trend is to produce topologically protected phonon transport. Once realized, this will unlock the full toolbox of optomechanics for investigations of topological phononics. Here, we report the realization of topological phonon transport in an optomechanical device. Our experiment is based on an innovative multiscale optomechanical crystal design and allows for site-resolved measurements in an array of more than 800 cavities. The sensitivity inherent in our optomechanical read-out allowed us to detect thermal fluctuations traveling along topological edge channels. This represents a major step forward in an ongoing effort to downscale mechanical topological systems.

8.
Mol Ther ; 30(8): 2693-2708, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35526095

RESUMO

A promising treatment for ß-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from ß-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating ß-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.


Assuntos
Hemoglobina Fetal , Hemoglobinopatias , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , gama-Globinas/genética
9.
Small GTPases ; 13(1): 267-281, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983288

RESUMO

RHOH/TFF, a member of the RAS GTPase super family, has important functions in lymphopoiesis and proximal T cell receptor signalling and has been implicated in a variety of leukaemias and lymphomas. RHOH was initially identified as a translocation partner with BCL-6 in non-Hodgkin lymphoma (NHL), and aberrant somatic hypermutation (SHM) in the 5' untranslated region of the RHOH gene has also been detected in Diffuse Large B-Cell Lymphoma (DLBCL). Recent data suggest a correlation between RhoH expression and disease progression in Acute Myeloid Leukaemia (AML). However, the effects of RHOH mutations and translocations on RhoH expression and malignant transformation remain unknown. We found that aged Rhoh-/- (KO) mice had shortened lifespans and developed B cell derived splenomegaly with an increased Bcl-6 expression profile in splenocytes. We utilized a murine model of Bcl-6 driven DLBCL to further explore the role of RhoH in malignant behaviour by crossing RhohKO mice with Iµ-HABcl-6 transgenic (Bcl-6Tg) mice. The loss of Rhoh in Bcl-6Tg mice led to a more rapid disease progression. Mechanistically, we demonstrated that deletion of Rhoh in these murine lymphoma cells was associated with decreased levels of the RhoH binding partner KAISO, a dual-specific Zinc finger transcription factor, de-repression of KAISO target Bcl-6, and downregulation of the BCL-6 target Blimp-1. Re-expression of RhoH in RhohKOBcl-6Tg lymphoma cell lines reversed these changes in expression profile and reduced proliferation of lymphoma cells in vitro. These findings suggest a previously unidentified regulatory role of RhoH in the proliferation of tumour cells via altered BCL-6 expression. (250).


Assuntos
Linfoma , Fatores de Transcrição , Animais , Transformação Celular Neoplásica , Modelos Animais de Doenças , Linfoma/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP
10.
Nat Commun ; 12(1): 1334, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637765

RESUMO

To understand the mechanisms that mediate germline genetic leukemia predisposition, we studied the inherited ribosomopathy Shwachman-Diamond syndrome (SDS), a bone marrow failure disorder with high risk of myeloid malignancies at an early age. To define the mechanistic basis of clonal hematopoiesis in SDS, we investigate somatic mutations acquired by patients with SDS followed longitudinally. Here we report that multiple independent somatic hematopoietic clones arise early in life, most commonly harboring heterozygous mutations in EIF6 or TP53. We show that germline SBDS deficiency establishes a fitness constraint that drives selection of somatic clones via two distinct mechanisms with different clinical consequences. EIF6 inactivation mediates a compensatory pathway with limited leukemic potential by ameliorating the underlying SDS ribosome defect and enhancing clone fitness. TP53 mutations define a maladaptive pathway with enhanced leukemic potential by inactivating tumor suppressor checkpoints without correcting the ribosome defect. Subsequent development of leukemia was associated with acquisition of biallelic TP53 alterations. These results mechanistically link leukemia predisposition to germline genetic constraints on cellular fitness, and provide a rational framework for clinical surveillance strategies.


Assuntos
Hematopoiese Clonal/genética , Hematopoiese Clonal/fisiologia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/metabolismo , Adolescente , Adulto , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/metabolismo , Criança , Pré-Escolar , Fatores de Iniciação em Eucariotos/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Ribossomos/genética , Proteína Supressora de Tumor p53/genética , Adulto Jovem
11.
J Crohns Colitis ; 15(9): 1588-1595, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33596307

RESUMO

BACKGROUND AND AIMS: Mutations in IL10 or the IL10 receptor lead to very early onset [VEO] inflammatory bowel disease [IBD], a life-threatening disease which is often unresponsive to conventional medication. Recent studies have demonstrated that defective IL-10 receptor signalling in innate immune cells is a key driver of severe intestinal inflammation in VEO-IBD. Specifically, IL10 unresponsiveness of macrophages, which govern the tight balance between pro- and anti-inflammatory responses in the intestinal system, plays a central role in the events leading to excessive inflammatory responses and the development of IBD. METHODS AND RESULTS: We here evaluated haematopoietic stem cell gene therapy in a VEO-IBD mouse model and demonstrated that the therapeutic response closely correlates with gene correction of the IL10 signalling pathway in intestinal macrophages. This finding prompted us to evaluate the therapeutic efficacy of macrophage transplantation in the Il10rb-/- VEO-IBD mouse model. A 6-week regimen employing a combination of depletion of endogenous hyperinflammatory macrophages followed by intraperitoneal administration of wild-type [WT] macrophages significantly reduced colitis symptoms. CONCLUSIONS: In summary, we show that the correction of the IL10 receptor defect in macrophages, either by genetic therapy or transfer of WT macrophages to the peritoneum, can ameliorate disease-related symptoms and potentially represent novel treatment approaches for VEO-IBD patients.


Assuntos
Transferência Adotiva , Doenças Inflamatórias Intestinais/fisiopatologia , Doenças Inflamatórias Intestinais/terapia , Subunidade beta de Receptor de Interleucina-10/fisiologia , Macrófagos/transplante , Animais , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/etiologia , Camundongos
12.
N Engl J Med ; 384(3): 205-215, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33283990

RESUMO

BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).


Assuntos
Anemia Falciforme/terapia , Hemoglobina Fetal/biossíntese , Terapia Genética , Interferência de RNA , Proteínas Repressoras/genética , gama-Globinas/metabolismo , Adolescente , Adulto , Anemia Falciforme/genética , Criança , Regulação para Baixo , Feminino , Hemoglobina Fetal/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos , Humanos , Masculino , Projetos Piloto , RNA Interferente Pequeno , Proteínas Repressoras/metabolismo , Transplante Autólogo , Adulto Jovem , gama-Globinas/genética
13.
BioDrugs ; 34(5): 625-647, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897504

RESUMO

ß-Globin gene transfer has been used as a paradigm for hematopoietic stem cell (HSC) gene therapy, but is subject to major difficulties, such as the lack of selection of genetically corrected HSCs, the need for high-level expression of the therapeutic gene, and cell-specific transgene expression. It took more than 40 years for scientists and physicians to advance from the cloning of globin gene and discovering globin gene mutations to improving our understanding of the pathophysiological mechanisms involved, the detection of genetic modifiers, the development of animal models and gene transfer vectors, comprehensive animal testing, and demonstrations of phenotypic improvement in clinical trials, culminating in the authorization of the first gene therapy product for ß-thalassemia in 2019. Research has focused mostly on the development of lentiviral gene therapy vectors expressing variants of the ß-globin gene or, more recently, targeting a γ-globin repressor, some of which have entered clinical testing and should soon diversify the available treatments and promote price competition. These results are encouraging, but we have yet to reach the end of the story. New molecular and cellular tools, such as gene editing or the development of induced pluripotent stem cells, are being developed, heralding the emergence of alternative products, the efficacy and safety of which are being studied. Hemoglobin disorders constitute an important model for testing the pros and cons of these advanced technologies, some of which are already in the clinical phase. In this review, we focus on the development of the advanced products and recent technological innovations that could lead to clinical trials in the near future, and provide hope for a definitive cure of these severe conditions.


Assuntos
Terapia Genética , Talassemia beta , Animais , Edição de Genes , Vetores Genéticos , Terapias em Estudo , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia
14.
Mol Ther Methods Clin Dev ; 17: 589-600, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32300607

RESUMO

In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle ß-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.

15.
Curr Opin Hematol ; 27(3): 149-154, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205585

RESUMO

PURPOSE OF REVIEW: In this work we briefly summarize the key features and currently available conventional therapies for the two main ß-hemoglobinopathies, sickle cell disease (SCD) and ß-thalassemia, and review the rapidly evolving field of novel and emerging genetic therapies to cure the disease. RECENT FINDINGS: Gene therapy using viral vectors or designer nuclease-based gene editing is a relatively new field of medicine that uses the patient's own genetically modified cells to treat his or her own disease. Multiple different approaches are currently in development, and some have entered phase I clinical studies, including innovative therapies aiming at induction of fetal hemoglobin. SUMMARY: Early short-term therapeutic benefit has been reported for some of the ongoing clinical trials, but confirmation of long-term safety and efficacy remains to be shown. Future therapies aiming at the targeted correction of specific disease-causing DNA mutations are emerging and will likely enter clinical testing in the near future.


Assuntos
Anemia Falciforme , Terapia Genética/tendências , Talassemia beta , Anemia Falciforme/genética , Anemia Falciforme/terapia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Talassemia beta/genética , Talassemia beta/terapia
16.
Hum Gene Ther ; 31(3-4): 199-210, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31773990

RESUMO

Targeted integration into a genomic safe harbor, such as the AAVS1 locus on chromosome 19, promises predictable transgene expression and reduces the risk of insertional mutagenesis in the host genome. The application of gamma-retroviral long terminal repeat (LTR)-driven vectors, which semirandomly integrate into the genome, has previously caused severe adverse events in some clinical studies due to transactivation of neighboring proto-oncogenes. Consequently, the site-specific integration of a therapeutic transgene into a genomic safe harbor locus would allow stable genetic correction with a reduced risk of insertional mutagenesis. However, recent studies revealed that transgene silencing, especially in case of weaker cell type-specific promoters, can occur in the AAVS1 locus of human pluripotent stem cells (PSCs) and can impede transgene expression during differentiation. In this study, we aimed to correct p47phox deficiency, which is the second most common cause of chronic granulomatous disease, by insertion of a therapeutic p47phox transgene into the AAVS1 locus of human induced PSCs (iPSCs) using CRISPR-Cas9. We analyzed transgene expression and functional correction from three different myeloid-specific promoters (miR223, CatG/cFes, and myeloid-related protein 8 [MRP8]). Upon myeloid differentiation of corrected iPSC clones, we observed that the miR223 and CatG/cFes promoters achieved therapeutically relevant levels of p47phox expression and nicotinamide adenine dinucleotide phosphate oxidase activity, whereas the MRP8 promoter was less efficient. Analysis of the different promoters revealed high CpG methylation of the MRP8 promoter in differentiated cells, which correlated with the transgene expression data. In summary, we identified the miR223 and CatG/cFes promoters as cell type-specific promoters that allow stable transgene expression in the AAVS1 locus of iPSC-derived myeloid cells. Our findings further indicate that promoter silencing can occur in the AAVS1 safe harbor locus in differentiated hematopoietic cells and that a comparison of different promoters is necessary to achieve optimal transgene expression for therapeutic application of iPSC-derived cells.


Assuntos
Diferenciação Celular/genética , Inativação Gênica , Loci Gênicos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Mieloides/metabolismo , Regiões Promotoras Genéticas , Transgenes , Biomarcadores , Sistemas CRISPR-Cas , Edição de Genes , Expressão Gênica , Marcação de Genes , Vetores Genéticos , Doença Granulomatosa Crônica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células Mieloides/citologia , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Especificidade de Órgãos/genética
17.
Biochem Pharmacol ; 174: 113711, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726047

RESUMO

Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Imunoterapia Adotiva/métodos , Animais , Ensaios Clínicos como Assunto , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Viroses/genética , Viroses/imunologia , Viroses/terapia
18.
Nat Med ; 25(5): 776-783, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911135

RESUMO

Re-expression of the paralogous γ-globin genes (HBG1/2) could be a universal strategy to ameliorate the severe ß-globin disorders sickle cell disease (SCD) and ß-thalassemia by induction of fetal hemoglobin (HbF, α2γ2)1. Previously, we and others have shown that core sequences at the BCL11A erythroid enhancer are required for repression of HbF in adult-stage erythroid cells but are dispensable in non-erythroid cells2-6. CRISPR-Cas9-mediated gene modification has demonstrated variable efficiency, specificity, and persistence in hematopoietic stem cells (HSCs). Here, we demonstrate that Cas9:sgRNA ribonucleoprotein (RNP)-mediated cleavage within a GATA1 binding site at the +58 BCL11A erythroid enhancer results in highly penetrant disruption of this motif, reduction of BCL11A expression, and induction of fetal γ-globin. We optimize conditions for selection-free on-target editing in patient-derived HSCs as a nearly complete reaction lacking detectable genotoxicity or deleterious impact on stem cell function. HSCs preferentially undergo non-homologous compared with microhomology-mediated end joining repair. Erythroid progeny of edited engrafting SCD HSCs express therapeutic levels of HbF and resist sickling, while those from patients with ß-thalassemia show restored globin chain balance. Non-homologous end joining repair-based BCL11A enhancer editing approaching complete allelic disruption in HSCs is a practicable therapeutic strategy to produce durable HbF induction.


Assuntos
Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Sequência de Aminoácidos , Anemia Falciforme/sangue , Anemia Falciforme/genética , Anemia Falciforme/terapia , Sequência de Bases , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Elementos Facilitadores Genéticos , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Mutação INDEL , Proteínas Nucleares/genética , RNA Guia de Cinetoplastídeos/genética , Proteínas Repressoras , Talassemia beta/sangue , Talassemia beta/genética , Talassemia beta/terapia , gama-Globinas/biossíntese , gama-Globinas/genética
19.
Blood ; 133(21): 2255-2262, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30704988

RESUMO

The thalassemias are compelling targets for therapeutic genome editing in part because monoallelic correction of a subset of hematopoietic stem cells (HSCs) would be sufficient for enduring disease amelioration. A primary challenge is the development of efficient repair strategies that are effective in HSCs. Here, we demonstrate that allelic disruption of aberrant splice sites, one of the major classes of thalassemia mutations, is a robust approach to restore gene function. We target the IVS1-110G>A mutation using Cas9 ribonucleoprotein (RNP) and the IVS2-654C>T mutation by Cas12a/Cpf1 RNP in primary CD34+ hematopoietic stem and progenitor cells (HSPCs) from ß-thalassemia patients. Each of these nuclease complexes achieves high efficiency and penetrance of therapeutic edits. Erythroid progeny of edited patient HSPCs show reversal of aberrant splicing and restoration of ß-globin expression. This strategy could enable correction of a substantial fraction of transfusion-dependent ß-thalassemia genotypes with currently available gene-editing technology.


Assuntos
Edição de Genes , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas , Sítios de Splice de RNA , Splicing de RNA , Globinas beta , Talassemia beta , Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Mutação Puntual , Globinas beta/biossíntese , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia
20.
Oncogene ; 38(2): 261-272, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30093631

RESUMO

Chromosomal translocations represent frequent events in leukemia. In t(8;21)+ acute myeloid leukemia, RUNX1 is fused to nearly the entire ETO protein, which contains four conserved nervy homology regions, NHR1-4. Furthermore RUNX1/ETO interacts with ETO-homologous proteins via NHR2, thereby multiplying NHR domain contacts. As shown recently, RUNX1/ETO retains oncogenic activity upon either deletion of the NHR3 + 4 N-CoR/SMRT interaction domain or substitution of the NHR2 tetramer domain. Thus, we aimed to clarify the specificities of the NHR domains. A C-terminally NHR3 + 4 truncated RUNX1/ETO containing a heterologous, structurally highly related non-NHR2 tetramer interface translocated into the nucleus and bound to RUNX1 consensus motifs. However, it failed to interact with ETO-homologues, repress RUNX1 targets, and transform progenitors. Surprisingly, transforming capacity was fully restored by C-terminal fusion with ETO's NHR4 zinc-finger or the repressor domain 3 of N-CoR, while other repression domains failed. With an inducible protein assembly system, we further demonstrated that NHR4 domain activity is critically required early in the establishment of progenitor cultures expressing the NHR2 exchanged truncated RUNX1/ETO. Together, we can show that NHR2 and NHR4 domains can be replaced by heterologous protein domains conferring tetramerization and repressor functions, thus showing that the NHR2 and NHR4 domain structures do not have irreplaceable functions concerning RUNX1/ETO activity for the establishment of human CD34+ cell expansion. We could resemble the function of RUNX1/ETO through modular recomposition with protein domains from RUNX1, ETO, BCR and N-CoR without any NHR2 and NHR4 sequences. As most transcriptional repressor proteins do not comprise tetramerization domains, our results provide a possible explanation as to the reason that RUNX1 is recurrently found translocated to ETO family members, which all contain tetramer together with transcriptional repressor moieties.


Assuntos
Transformação Celular Neoplásica/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Antígenos CD34 , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Domínios Proteicos , Proteína 1 Parceira de Translocação de RUNX1/química , Proteína 1 Parceira de Translocação de RUNX1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...