Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 9(1): 21, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519481

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.

2.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961520

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We have performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 9 severe de novo pdSNVs in genes not previously implicated in ASD (RASAL2, RAP1A, IRX5, SLC9A1, AGPAT3, MGAT3, RAB8B, MGAT5B, YME1L1), highlighted novel candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, but this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in new ASD/NDD candidates. In conclusion, our study strengthens the role of BRSK2 and other neurodevelopmental genes in ASD risk, highlights novel candidates and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.

3.
Front Genet ; 13: 953762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419830

RESUMO

Autism spectrum disorder (ASD) is a clinically heterogeneous class of neurodevelopmental conditions with a strong, albeit complex, genetic basis. The genetic architecture of ASD includes different genetic models, from monogenic transmission at one end, to polygenic risk given by thousands of common variants with small effects at the other end. The mitochondrial DNA (mtDNA) was also proposed as a genetic modifier for ASD, mostly focusing on maternal mtDNA, since the paternal mitogenome is not transmitted to offspring. We extensively studied the potential contribution of mtDNA in ASD pathogenesis and risk through deep next generation sequencing and quantitative PCR in a cohort of 98 families. While the maternally-inherited mtDNA did not seem to predispose to ASD, neither for haplogroups nor for the presence of pathogenic mutations, an unexpected influence of paternal mtDNA, apparently centered on haplogroup U, came from the Italian families extrapolated from the test cohort (n = 74) when compared to the control population. However, this result was not replicated in an independent Italian cohort of 127 families and it is likely due to the elevated paternal age at time of conception. In addition, ASD probands showed a reduced mtDNA content when compared to their unaffected siblings. Multivariable regression analyses indicated that variants with 15%-5% heteroplasmy in probands are associated to a greater severity of ASD based on ADOS-2 criteria, whereas paternal super-haplogroups H and JT were associated with milder phenotypes. In conclusion, our results suggest that the mtDNA impacts on ASD, significantly modifying the phenotypic expression in the Italian population. The unexpected finding of protection induced by paternal mitogenome in term of severity may derive from a role of mtDNA in influencing the accumulation of nuclear de novo mutations or epigenetic alterations in fathers' germinal cells, affecting the neurodevelopment in the offspring. This result remains preliminary and needs further confirmation in independent cohorts of larger size. If confirmed, it potentially opens a different perspective on how paternal non-inherited mtDNA may predispose or modulate other complex diseases.

4.
Front Psychiatry ; 13: 858238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350424

RESUMO

Autism Spectrum Disorder (ASD) is a highly heterogeneous neuropsychiatric disorder with a strong genetic component. The genetic architecture is complex, consisting of a combination of common low-risk and more penetrant rare variants. Voltage-gated calcium channels (VGCCs or Cav) genes have been implicated as high-confidence susceptibility genes for ASD, in accordance with the relevant role of calcium signaling in neuronal function. In order to further investigate the involvement of VGCCs rare variants in ASD susceptibility, we performed whole genome sequencing analysis in a cohort of 105 families, composed of 124 ASD individuals, 210 parents and 58 unaffected siblings. We identified 53 rare inherited damaging variants in Cav genes, including genes coding for the principal subunit and genes coding for the auxiliary subunits, in 40 ASD families. Interestingly, biallelic rare damaging missense variants were detected in the CACNA1H gene, coding for the T-type Cav3.2 channel, in ASD probands from two different families. Thus, to clarify the role of these CACNA1H variants on calcium channel activity we performed electrophysiological analysis using whole-cell patch clamp technology. Three out of four tested variants were shown to mildly affect Cav3.2 channel current density and activation properties, possibly leading to a dysregulation of intracellular Ca2+ ions homeostasis, thus altering calcium-dependent neuronal processes and contributing to ASD etiology in these families. Our results provide further support for the role of CACNA1H in neurodevelopmental disorders and suggest that rare CACNA1H variants may be involved in ASD development, providing a high-risk genetic background.

5.
J Cell Mol Med ; 25(5): 2459-2470, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476483

RESUMO

Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%-30%) presenting a rare large-effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD-associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole-exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion-transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10-5 ). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low-level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large-effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/etiologia , Proteínas de Ligação ao Cálcio/genética , Predisposição Genética para Doença , Heterozigoto , Moléculas de Adesão de Célula Nervosa/genética , Penetrância , Deleção de Sequência , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Éxons , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Variação Genética , Genoma Mitocondrial , Genômica/métodos , Humanos , Lactente , Masculino , Fenótipo , Sequenciamento do Exoma
6.
Brain Sci ; 10(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081247

RESUMO

We examined the potential benefits of neuroimaging measurements across the first 5 years of life in detecting early comorbid or etiological signs of autism spectrum disorder (ASD). In particular, we analyzed the prevalence of neuroradiologic findings in routine magnetic resonance imaging (MRI) scans of a group of 117 ASD children younger than 5 years old. These data were compared to those reported in typically developing (TD) children. MRI findings in children with ASD were analyzed in relation to their cognitive level, severity of autistic symptoms, and the presence of electroencephalogram (EEG) abnormalities. The MRI was rated abnormal in 55% of children with ASD with a significant prevalence in the high-functioning subgroup compared to TD children. We report significant incidental findings of mega cisterna magna, ventricular anomalies and abnormal white matter signal intensity in ASD without significant associations between these MRI findings and EEG features. Based on these results we discuss the role that brain MRI may play in the diagnostic procedure of ASD.

7.
Sci Rep ; 10(1): 3198, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081867

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition with a complex and heterogeneous genetic etiology. While a proportion of ASD risk is attributable to common variants, rare copy-number variants (CNVs) and protein-disrupting single-nucleotide variants (SNVs) have been shown to significantly contribute to ASD etiology. We analyzed a homogeneous cohort of 127 ASD Italian families genotyped with the Illumina PsychArray, to perform an integrated analysis of CNVs and SNVs and to assess their contribution to ASD risk. We observed a higher burden of rare CNVs, especially deletions, in ASD individuals versus unaffected controls. Furthermore, we identified a significant enrichment of rare CNVs intersecting ASD candidate genes reported in the SFARI database. Family-based analysis of rare SNVs genotyped by the PsychArray also indicated an increased transmission of rare SNV variants from heterozygous parents to probands, supporting a multigenic model of ASD risk with significant contributions of both variant types. Moreover, our study reinforced the evidence for a significant role of VPS13B, WWOX, CNTNAP2, RBFOX1, MACROD2, APBA2, PARK2, GPHN, and RNF113A genes in ASD susceptibility. Finally, we showed that the PsychArray, besides providing useful genotyping data in psychiatric disorders, is a valuable and cost-efficient tool for genic CNV detection, down to 10 kb.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Exoma , Saúde da Família , Feminino , Deleção de Genes , Duplicação Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Itália/epidemiologia , Desequilíbrio de Ligação , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Pais , Linhagem , Polimorfismo de Nucleotídeo Único , Risco
8.
J Cell Mol Med ; 24(2): 2064-2069, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800155

RESUMO

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by high heritability. It is known that genetic factors contribute to ASD pathogenesis. In particular, copy number variants (CNVs) are involved in ASD susceptibility and can affect gene expression regulation. 2p11.2 microdeletions encompassing ELMOD3, CAPG and SH2D6 genes have been described in four unrelated ASD families. The present study revealed that this microdeletion is responsible for the production of a chimeric transcript generated from the fusion between ELMOD3 and SH2D6. The identified transcript showed significantly higher expression levels in subjects carrying the deletion compared to control subjects, suggesting that it is not subjected to nonsense-mediated decay and might encode for a chimeric protein. In conclusion, this study suggests the possible involvement of this gene fusion, together with the other previously identified variants, in ASD.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas Ativadoras de GTPase/genética , Fusão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Deleção Cromossômica , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
9.
Ann Clin Transl Neurol ; 6(3): 475-485, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911571

RESUMO

Objective: We investigated the contribution to sporadic focal epilepsies (FE) of ultrarare variants in genes coding for the components of complexes regulating mechanistic Target Of Rapamycin (mTOR)complex 1 (mTORC1). Methods: We collected genetic data of 121 Italian isolated FE cases and 512 controls by Whole Exome Sequencing (WES) and single-molecule Molecular Inversion Probes (smMIPs) targeting 10 genes of the GATOR1, GATOR2, and TSC complexes. We collapsed "qualifying" variants (ultrarare and predicted to be deleterious or loss of function) across the examined genes and sought to identify their enrichment in cases compared to controls. Results: We found eight qualifying variants in cases and nine in controls, demonstrating enrichment in FE patients (P = 0.006; exact unconditional test, one-tailed). Pathogenic variants were identified in DEPDC5 and TSC2, both major genes for Mendelian FE syndromes. Interpretation: Our findings support the contribution of ultrarare variants in genes in the mTOR pathway complexes GATOR and TSC to the risk of sporadic FE and a shared genetic basis between rare and common epilepsies. The identification of a monogenic etiology in isolated cases, most typically encountered in clinical practice, may offer to a broader community of patients the perspective of precision therapies directed by the underlying genetic cause.


Assuntos
Epilepsias Parciais/genética , Variação Estrutural do Genoma/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Proteínas Ativadoras de GTPase/genética , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Sequenciamento do Exoma
10.
J Clin Med ; 8(2)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736458

RESUMO

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with high heritability, although their underlying genetic factors are still largely unknown. Here we present a comprehensive genetic characterization of two ASD siblings from Sardinia by genome-wide copy number variation analysis and whole exome sequencing (WES), to identify novel genetic alterations associated with this disorder. Single nucleotide polymorphism (SNP) array data revealed a rare microdeletion involving CAPG, ELMOD3, and SH2D6 genes, in both siblings. CAPG encodes for a postsynaptic density (PSD) protein known to regulate spine morphogenesis and synaptic formation. The reduced CAPG mRNA and protein expression levels in ASD patients, in the presence of hemizygosity or a particular genetic and/or epigenetic background, highlighted the functional relevance of CAPG as a candidate gene for ASD. WES analysis led to the identification in both affected siblings of a rare frameshift mutation in VDAC3, a gene intolerant to loss of function mutation, encoding for a voltage-dependent anion channel localized on PSD. Moreover, four missense damaging variants were identified in genes intolerant to loss of function variation encoding for PSD proteins: PLXNA2, KCTD16, ARHGAP21, and SLC4A1. This study identifies CAPG and VDAC3 as candidate genes and provides additional support for genes encoding PSD proteins in ASD susceptibility.

11.
Eur J Hum Genet ; 26(12): 1824-1831, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30089821

RESUMO

The role of nicotinic acetylcholine receptors (nAChR) in nicotine dependence (ND) is well established; CHRNA7, encoding the α7 subunit, has a still uncertain role in ND, although it is implicated in a wide range of neuropsychiatric conditions. CHRFAM7A, a hybrid gene containing a partial duplication of CHRNA7, is possibly involved in modulating α7 nAChR function. The aim of this study was to investigate the role of CHRNA7 and CHRFAM7A genetic variants in ND and to test the hypothesis that α7 nAChR variation may modulate the efficacy of varenicline treatment in smoking cessation. We assessed CHRNA7 and CHRFAM7A copy number, CHRFAM7A exon 6 ∆2 bp polymorphism, and sequence variants in the CHRNA7 proximal promoter in an Italian sample of 408 treatment-seeking smokers. We conducted case-control and quantitative association analyses using two smoking measures (cigarettes per day, CPD, and Fagerström Test for Nicotine Dependence, FTND). Next, driven by the hypothesis that varenicline may exert some of its therapeutic effects through activation of α7 nAChRs, we restricted the analysis to a subgroup of 142 smokers who received varenicline treatment. The CHRNA7 promoter variant rs28531779 showed association with both smoking quantitative measures (FNTD p = 0.026, ß = 0.89, 95% CI 0.11-1.67; CPD p = 0.006, ß = 4.82 95% CI 1.42-8.22). Moreover, in the varenicline-treated subgroup we observed association of CHRFAM7A copy number with 6 months smoking abstinence (p = 0.035, OR = 3.18, 95% CI = 1.09-9.30). Thus, our study points to a possible role of genetic variation in CHRNA7 and CHRFAM7A in tobacco addiction mechanisms and response to varenicline treatment.


Assuntos
Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Tabagismo/genética , Vareniclina/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7/genética , Adolescente , Adulto , Idoso , Resistência a Medicamentos/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Tabagismo/tratamento farmacológico
12.
Oncotarget ; 9(17): 13807-13821, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568396

RESUMO

Pilocytic astrocytoma (PA) is the most common glioma in pediatric patients and occurs in different locations. Chromosomal alterations are mostly located at chromosome 7q34 comprising the BRAF oncogene with consequent activation of the mitogen-activated protein kinase pathway. Although genetic and epigenetic alterations characterizing PA from different localizations have been reported, the role of epigenetic alterations in PA development is still not clear. The aim of this study was to investigate whether distinctive methylation patterns may define biologically relevant groups of PAs. Integrated DNA methylation analysis was performed on 20 PAs and 4 normal brain samples by Illumina Infinium HumanMethylation27 BeadChips. We identified distinct methylation profiles characterizing PAs from different locations (infratentorial vs supratentorial) and tumors with onset before and after 3 years of age. These results suggest that PA may be related to the specific brain site where the tumor arises from region-specific cells of origin. We identified and validated in silico the methylation alterations of some CpG islands. Furthermore, we evaluated the expression levels of selected differentially methylated genes and identified two biomarkers, one, IRX2, related to the tumor localization and the other, TOX2, as tumoral biomarker.

13.
J Headache Pain ; 17(1): 114, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27957625

RESUMO

BACKGROUND: Cluster Headache (CH) is a severe primary headache, with a poorly understood pathophysiology. Complex genetic factors are likely to play a role in CH etiology; however, no confirmed gene associations have been identified. The aim of this study is to identify genetic variants influencing risk to CH and to explore the potential pathogenic mechanisms. METHODS: We have performed a genome-wide association study (GWAS) in a clinically well-defined cohort of 99 Italian patients with CH and in a control sample of 360 age-matched sigarette smoking healthy individuals, using the Infinium PsychArray (Illumina), which combines common highly-informative genome-wide tag SNPs and exonic SNPs. Genotype data were used to carry out a genome-wide single marker case-control association analysis using common SNPs, and a gene-based association analysis focussing on rare protein altering variants in 745 candidate genes with a putative role in CH. RESULTS: Although no single variant showed statistically significant association at the genome-wide threshold, we identified an interesting suggestive association (P = 9.1 × 10-6) with a common variant of the PACAP receptor gene (ADCYAP1R1). Furthermore, gene-based analysis provided significant evidence of association (P = 2.5 × 10-5) for a rare potentially damaging missense variant in the MME gene, encoding for the membrane metallo-endopeptidase neprilysin. CONCLUSIONS: Our study represents the first genome-wide association study of common SNPs and rare exonic variants influencing risk for CH. The most interesting results implicate ADCYAP1R1 and MME gene variants in CH susceptibility and point to a role for genes involved in pain processing. These findings provide new insights into the pathogenesis of CH that need further investigation and replication in larger CH samples.


Assuntos
Cefaleia Histamínica/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Neprilisina/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cefaleia Histamínica/diagnóstico , Feminino , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
14.
Am J Med Genet A ; 167A(4): 715-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655306

RESUMO

Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism.


Assuntos
Transtorno do Espectro Autista/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Adolescente , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...