Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485256

RESUMO

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Assuntos
Prosencéfalo Basal , Cocaína , Vias Neurais , Recompensa , Animais , Camundongos , Prosencéfalo Basal/fisiologia , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia
2.
Cell Rep ; 43(3): 113956, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489267

RESUMO

Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.


Assuntos
Cocaína , Habenula , Camundongos , Animais , Habenula/fisiologia , Cocaína/farmacologia , Memória , Regulação da Expressão Gênica , Recidiva
3.
Curr Opin Neurobiol ; 83: 102786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776675

RESUMO

Rates of individuals struggling with psychostimulant use disorder (PSUD), defined as chronic use of psychostimulants despite negative consequences, are growing rapidly over the last few decades. However, there are no current pharmacotherapeutics to aid individuals in maintaining drug abstinence. Identifying the underlying neurobiological mechanisms that promote persistent craving and taking of psychostimulants is critical to creating novel pharmacological treatments for PSUD. Psychostimulant use dysregulates processes within the brain that are responsible for decision-making, reward, and memory formation to drive future drug-seeking. Here, we describe novel findings and theories on how psychostimulants impact mechanisms related to transcription, mitochondrial function, and synaptic plasticity within the reward system to drive drug-seeking. We also highlight work examining how psychostimulants impact neural networks through rewiring circuitry to drive addiction-related behaviors. Overall, this review aims to feature the latest progress in understanding the biological basis of PSUD and promising mechanisms for PSUD pharmacotherapeutics.


Assuntos
Comportamento Aditivo , Estimulantes do Sistema Nervoso Central , Humanos , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Encéfalo
4.
J Neurosci ; 43(3): 405-418, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36443000

RESUMO

Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.


Assuntos
Prosencéfalo Basal , Feminino , Camundongos , Animais , Prosencéfalo Basal/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/fisiologia , Núcleo Accumbens/metabolismo , Recompensa , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
5.
Proc Natl Acad Sci U S A ; 119(32): e2114758119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921439

RESUMO

Histone acetylation is a key component in the consolidation of long-term fear memories. Histone acetylation is fueled by acetyl-coenzyme A (acetyl-CoA), and recently, nuclear-localized metabolic enzymes that produce this metabolite have emerged as direct and local regulators of chromatin. In particular, acetyl-CoA synthetase 2 (ACSS2) mediates histone acetylation in the mouse hippocampus. However, whether ACSS2 regulates long-term fear memory remains to be determined. Here, we show that Acss2 knockout is well tolerated in mice, yet the Acss2-null mouse exhibits reduced acquisition of long-term fear memory. Loss of Acss2 leads to reductions in both histone acetylation and expression of critical learning and memory-related genes in the dorsal hippocampus, specifically following fear conditioning. Furthermore, systemic administration of blood-brain barrier-permeable Acss2 inhibitors during the consolidation window reduces fear-memory formation in mice and rats and reduces anxiety in a predator-scent stress paradigm. Our findings suggest that nuclear acetyl-CoA metabolism via ACSS2 plays a critical, previously unappreciated, role in the formation of fear memories.


Assuntos
Acetato-CoA Ligase , Acetilcoenzima A , Condicionamento Clássico , Medo , Histonas , Consolidação da Memória , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/enzimologia , Histonas/metabolismo , Camundongos , Camundongos Knockout , Ratos
7.
Neuron ; 109(13): 2043-2044, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237276

RESUMO

The ventral pallidum (VP) is a key hub within the reward system that mediates drug-seeking behaviors. However, molecular and cellular adaptations within the VP following drug use are not fully elucidated. In this issue of Neuron, Pribiag et al. (2021) demonstrate how cocaine induces circuit-specific changes within the VP via dopamine-receptor-D3-dependent processes to promote cocaine seeking.


Assuntos
Prosencéfalo Basal , Cocaína , Comportamento de Procura de Droga , Neurônios , Recompensa
8.
Neuropsychopharmacology ; 46(10): 1768-1779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34155331

RESUMO

During the initial stages of drug use, cocaine-induced neuroadaptations within the ventral tegmental area (VTA) are critical for drug-associated cue learning and drug reinforcement processes. These neuroadaptations occur, in part, from alterations to the transcriptome. Although cocaine-induced transcriptional mechanisms within the VTA have been examined, various regimens and paradigms have been employed to examine candidate target genes. In order to identify key genes and biological processes regulating cocaine-induced processes, we employed genome-wide RNA-sequencing to analyze transcriptional profiles within the VTA from male mice that underwent one of four commonly used paradigms: acute home cage injections of cocaine, chronic home cage injections of cocaine, cocaine-conditioning, or intravenous-self administration of cocaine. We found that cocaine alters distinct sets of VTA genes within each exposure paradigm. Using behavioral measures from cocaine self-administering mice, we also found several genes whose expression patterns corelate with cocaine intake. In addition to overall gene expression levels, we identified several predicted upstream regulators of cocaine-induced transcription shared across all paradigms. Although distinct gene sets were altered across cocaine exposure paradigms, we found, from Gene Ontology (GO) term analysis, that biological processes important for energy regulation and synaptic plasticity were affected across all cocaine paradigms. Coexpression analysis also identified gene networks that are altered by cocaine. These data indicate that cocaine alters networks enriched with glial cell markers of the VTA that are involved in gene regulation and synaptic processes. Our analyses demonstrate that transcriptional changes within the VTA depend on the route, dose and context of cocaine exposure, and highlight several biological processes affected by cocaine. Overall, these findings provide a unique resource of gene expression data for future studies examining novel cocaine gene targets that regulate drug-associated behaviors.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Masculino , Camundongos , Transcriptoma , Área Tegmentar Ventral
9.
Bio Protoc ; 10(8): e3595, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659561

RESUMO

A key component of combating substance use disorders is understanding the neural mechanisms that support drug reward. Tasks such as self-administration assess the reinforcing properties of a drug using a learned behavior but require numerous training sessions and surgery. In comparison, the conditioned place preference (CPP) task assesses reward with little training, without costly surgeries, and confounds that accompany the use of anesthesia or pain-relieving drugs. The CPP task contains three phases: pretest, conditioning, and posttest. During the pretest, mice are allowed to explore a three-compartment apparatus. The two outer compartments contain unique olfactory, tactile, and visual cues whereas the middle compartment is used as an entrance and exit for the mice on test days. During conditioning, mice receive cocaine before being confined to one of the outer compartments. The following day, mice are given saline then confined to the other outer compartment. These pairings are then repeated once. At posttest, mice are permitted to freely explore all compartments in a drug-free state while the time spent in each compartment is recorded. A CPP score is calculated for both the pretest and posttest by comparing the time spent in the cocaine-paired and saline-paired compartments. Enhancements in the CPP score from the pretest to the posttest serve as a measure of the rewarding property of the cocaine. This task offers several notable advantages: 1) the simultaneous recording of locomotor activity and reward, which may utilize different neural mechanisms, 2) the three-compartment CPP setup removes the bias that can be observed in a two-compartment design, and 3) use of multimodal cues support the acquisition of a robust preference in a variety of mouse strains.

10.
Neuropharmacology ; 153: 13-19, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30998946

RESUMO

Propensity to relapse following long periods of abstinence is a key feature of substance use disorder. Drugs of abuse, such as cocaine, cause long-term changes in the neural circuitry regulating reward, motivation, and memory processes through dysregulation of various molecular mechanisms, including epigenetic regulation of activity-dependent gene expression. Underlying drug-induced changes to neural circuit function are the molecular mechanisms regulating activity-dependent gene expression. Of note, histone acetyltransferases and histone deacetylases (HDACs), powerful epigenetic regulators of gene expression, are dysregulated following both acute and chronic cocaine exposure and are linked to cocaine-induced changes in neural circuit function. To better understand the effect of drug-induced changes on epigenetic function and behavior, we investigated HDAC3-mediated regulation of Nr4a2/Nurr1 in the medial habenula, an understudied pathway in cocaine-associated behaviors. Nr4a2, a transcription factor critical in cocaine-associated behaviors and necessary for MHb development, is enriched in the cholinergic cell-population of the MHb; yet, the role of NR4A2 within the MHb in the adult brain remains elusive. Here, we evaluated whether epigenetic regulation of Nr4a2 in the MHb has a role in reinstatement of cocaine-associated behaviors. We found that HDAC3 disengages from Nr4a2 in the MHb in response to cocaine-primed reinstatement. Whereas enhancing HDAC3 function in the MHb had no effect on reinstatement, we found, using a dominant-negative splice variant (NURR2C), that loss of NR4A2 function in the MHb blocked reinstatement behaviors. These results show for the first time that regulation of NR4A2 function in the MHb is critical in relapse-like behaviors.


Assuntos
Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Epigênese Genética/fisiologia , Genes Precoces/fisiologia , Habenula/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Feminino , Genes Precoces/efeitos dos fármacos , Habenula/efeitos dos fármacos , Histona Desacetilases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
11.
J Neurosci ; 39(14): 2745-2761, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737312

RESUMO

The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress, and glutamate transmission within this region has been implicated in the neurobiology of alcoholism. Herein, we used a combination of immunoblotting, neuropharmacological and transgenic procedures to investigate the role for metabotropic glutamate receptor 5 (mGlu5) signaling within the BNST in excessive drinking. We discovered that mGlu5 signaling in the BNST is linked to excessive alcohol consumption in a manner distinct from behavioral or neuropharmacological endophenotypes that have been previously implicated as triggers for heavy drinking. Our studies demonstrate that, in male mice, a history of chronic binge alcohol-drinking elevates BNST levels of the mGlu5-scaffolding protein Homer2 and activated extracellular signal-regulated kinase (ERK) in an adaptive response to limit alcohol consumption. Male and female transgenic mice expressing a point mutation of mGlu5 that cannot be phosphorylated by ERK exhibit excessive alcohol-drinking, despite greater behavioral signs of alcohol intoxication and reduced anxiety, and are insensitive to local manipulations of signaling in the BNST. These transgenic mice also show selective insensitivity to alcohol-aversion and increased novelty-seeking, which may be relevant to excessive drinking. Further, the insensitivity to alcohol-aversion exhibited by male mice can be mimicked by the local inhibition of ERK signaling within the BNST. Our findings elucidate a novel mGluR5-linked signaling state within BNST that plays a central and unanticipated role in excessive alcohol consumption.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress and alcohol, and glutamate transmission within BNST is implicated in the neurobiology of alcoholism. The present study provides evidence that a history of excessive alcohol drinking increases signaling through the metabotropic glutamate receptor 5 (mGlu5) receptor within the BNST in an adaptive response to limit alcohol consumption. In particular, disruption of mGlu5 phosphorylation by extracellular signal-regulated kinase within this brain region induces excessive alcohol-drinking, which reflects a selective insensitivity to the aversive properties of alcohol intoxication. These data indicate that a specific signaling state of mGlu5 within BNST plays a central and unanticipated role in excessive alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação/fisiologia
12.
Nat Rev Neurosci ; 20(3): 133-147, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696992

RESUMO

In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.


Assuntos
Encéfalo/fisiologia , Epigênese Genética , Epigenoma , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Metilação de DNA , Humanos , Memória/fisiologia
13.
Addict Biol ; 24(3): 403-413, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29430793

RESUMO

Propensity to relapse, even following long periods of abstinence, is a key feature in substance use disorders. Relapse and relapse-like behaviors are known to be induced, in part, by re-exposure to drug-associated cues. Yet, while many critical nodes in the neural circuitry contributing to relapse have been identified and studied, a full description of the networks driving reinstatement of drug-seeking behaviors is lacking. One area that may provide further insight to the mechanisms of relapse is the habenula complex, an epithalamic region composed of lateral and medial (MHb) substructures, each with unique cell and target populations. Although well conserved across vertebrate species, the functions of the MHb are not well understood. Recent research has demonstrated that the MHb regulates nicotine aversion and withdrawal. However, it remains undetermined whether MHb function is limited to nicotine and aversive stimuli or if MHb circuit regulates responses to other drugs of abuse. Advances in circuit-level manipulations now allow for cell-type and temporally specific manipulations during behavior, specifically in spatially restrictive brain regions, such as the MHb. In this study, we focus on the response of the MHb to reinstatement of cocaine-associated behavior, demonstrating that cocaine-primed reinstatement of conditioned place preference engages habenula circuitry. Using chemogenetics, we demonstrate that MHb activity is sufficient to induce reinstatement behavior. Together, these data identify the MHb as a key hub in the circuitry underlying reinstatement and may serve as a target for regulating relapse-like behaviors.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Habenula/fisiologia , Análise de Variância , Animais , Neurônios Colinérgicos/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Recidiva , Transdução de Sinais/efeitos dos fármacos
14.
Neuropsychopharmacology ; 42(6): 1284-1294, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27924874

RESUMO

Histone acetylation is a fundamental epigenetic mechanism that is dynamically regulated during memory formation. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) compete to modulate histone acetylation, allowing for rapid changes in acetylation in response to a learning event. HDACs are known to be powerful negative regulators of memory formation, but it is not clear whether this function depends on HDAC enzymatic activity per se. Here, we tested whether the enzymatic activity of an individual Class I HDAC, HDAC3, has a role in fear memory formation in subregions of the hippocampus and amygdala. We found that fear conditioning drove expression of the immediate early genes cFos and Nr4a2 in the hippocampus, which coincided with reduced HDAC3 occupancy at these promoters. Using a dominant-negative, deacetylase-dead point mutant virus (AAV-HDAC3(Y298H)-v5), we found that selectively blocking HDAC3 deacetylase activity in either the dorsal hippocampus or basal nucleus of the amygdala enhanced context fear without affecting tone fear. Blocking HDAC3 activity in the lateral nucleus of the amygdala, on the other hand, enhanced tone, but not context fear memory. These results show for the first time that the enzymatic activity of HDAC3 functions to negatively regulate fear memory formation. Further, HDAC3 activity regulates different aspects of fear memory in the basal and lateral subregions of the amygdala. Thus, the deacetylase activity of HDAC3 is a powerful negative regulator of fear memory formation in multiple subregions of the fear circuit.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Memória/fisiologia , Animais , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
15.
Biol Psychiatry ; 81(11): 959-970, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890469

RESUMO

BACKGROUND: The high prevalence and severity of methamphetamine (MA) abuse demands greater neurobiological understanding of its etiology. METHODS: We conducted immunoblotting and in vivo microdialysis procedures in MA high/low drinking mice, as well as in isogenic C57BL/6J mice that varied in their MA preference/taking, to examine the glutamate underpinnings of MA abuse vulnerability. Neuropharmacological and Homer2 knockdown approaches were also used in C57BL/6J mice to confirm the role for nucleus accumbens (NAC) glutamate/Homer2 expression in MA preference/aversion. RESULTS: We identified a hyperglutamatergic state within the NAC as a biochemical trait corresponding with both genetic and idiopathic vulnerability for high MA preference and taking. We also confirmed that subchronic subtoxic MA experience elicits a hyperglutamatergic state within the NAC during protracted withdrawal, characterized by elevated metabotropic glutamate 1/5 receptor function and Homer2 receptor-scaffolding protein expression. A high MA-preferring phenotype was recapitulated by elevating endogenous glutamate within the NAC shell of mice and we reversed MA preference/taking by lowering endogenous glutamate and/or Homer2 expression within this subregion. CONCLUSIONS: Our data point to an idiopathic, genetic, or drug-induced hyperglutamatergic state within the NAC as a mediator of MA addiction vulnerability.


Assuntos
Comportamento Aditivo/fisiopatologia , Ácido Glutâmico/fisiologia , Metanfetamina/farmacologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Técnicas de Silenciamento de Genes , Ácido Glutâmico/metabolismo , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/fisiologia , Masculino , Metanfetamina/efeitos adversos , Camundongos , Camundongos Endogâmicos , Microdiálise , Núcleo Accumbens/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Autoadministração
16.
Eur J Neurosci ; 43(5): 689-702, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26742098

RESUMO

Methamphetamine (MA) is a widely misused, highly addictive psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated MA impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relationship between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of MA (ten injections of 2 mg/kg, i.p.) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high vs. low MA-drinking selectively bred mouse lines (MAHDR vs. MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated MA sensitized drug-induced glutamate release and lowered indices of N-methyl-d-aspartate receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. Elevated basal glutamate, blunted MA-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high vs. low MA drinking, and Homer2a/b levels were inversely correlated with the motivational valence of MA in C57BL/6J mice. These data provide novel evidence that repeated, low-dose MA is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in MA addiction vulnerability/resiliency.


Assuntos
Sensibilização do Sistema Nervoso Central , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Glutâmico/metabolismo , Metanfetamina/farmacologia , Córtex Pré-Frontal/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Masculino , Metanfetamina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Córtex Pré-Frontal/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração , Transmissão Sináptica
17.
Addict Biol ; 21(3): 613-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25916683

RESUMO

An interaction exists between stress and alcohol in the etiology and chronicity of alcohol use disorders, yet a knowledge gap exists regarding the neurobiological underpinnings of this interaction. In this regard, we employed an 11-day unpredictable, chronic, mild stress (UCMS) procedure to examine for stress-alcohol cross-sensitization of motor activity as well as alcohol consumption/preference and intoxication. We also employed immunoblotting to relate the expression of glutamate receptor-related proteins within subregions of the nucleus accumbens (NAC) to the manifestation of behavioral cross-sensitization. UCMS mice exhibited a greater locomotor response to an acute injection of 2 g/kg alcohol than unstressed controls and this cross-sensitization extended to alcohol intake (0-20 percent), as well as to the intoxicating and sedative properties of 3 and 5 g/kg alcohol, respectively. Regardless of prior alcohol injection (2 g/kg), UCMS mice exhibited elevated NAC shell levels of mGlu1α, GluN2b and Homer2, as well as lower phospholipase Cß within this subregion. GluN2b levels were also lower within the NAC core of UCMS mice. The expression of stress-alcohol locomotor cross-sensitization was associated with lower mGlu1α within the NAC core and lower extracellular signal-regulated kinase activity within both NAC subregions. As Homer2 regulates alcohol sensitization, we assayed also for locomotor cross-sensitization in Homer2 wild-type (WT) and knock-out (KO) mice. WT mice exhibited a very robust cross-sensitization that was absent in KO animals. These results indicate that a history of mild stress renders an animal more sensitive to the psychomotor and rewarding properties of alcohol, which may depend on neuroplasticity within NAC glutamate transmission.


Assuntos
Alcoolismo/genética , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Proteínas de Arcabouço Homer/genética , Locomoção/genética , Núcleo Accumbens/metabolismo , Estresse Psicológico/genética , Alcoolismo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Arcabouço Homer/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Fosfolipase C beta/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo
18.
Biol Psychiatry ; 79(6): 443-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25861702

RESUMO

BACKGROUND: Protein kinase C epsilon (PKCε) is emerging as a potential target for the development of pharmacotherapies to treat alcohol use disorders, yet little is known regarding how a history of a highly prevalent form of drinking, binge alcohol intake, influences enzyme priming or the functional relevance of kinase activity for excessive alcohol intake. METHODS: Immunoblotting was employed on tissue from subregions of the nucleus accumbens (NAc) and the amygdala to examine both idiopathic and binge drinking-induced changes in constitutive PKCε priming. The functional relevance of PKCε translocation for binge drinking and determination of potential upstream signaling pathways involved were investigated using neuropharmacologic approaches within the context of two distinct binge drinking procedures, drinking in the dark and scheduled high alcohol consumption. RESULTS: Binge alcohol drinking elevated p(Ser729)-PKCε levels in both the NAc and the central nucleus of the amygdala (CeA). Moreover, immunoblotting studies of selectively bred and transgenic mouse lines revealed a positive correlation between the propensity to binge drink alcohol and constitutive p(Ser729)-PKCε levels in the NAc and CeA. Finally, neuropharmacologic inhibition of PKCε translocation within both regions reduced binge alcohol consumption in a manner requiring intact group 1 metabotropic glutamate receptors, Homer2, phospholipase C, and/or phosphotidylinositide-3 kinase function. CONCLUSIONS: Taken together, these data indicate that PKCε signaling in both the NAc and CeA is a major contributor to binge alcohol drinking and to the genetic propensity to consume excessive amounts of alcohol.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Núcleo Central da Amígdala/metabolismo , Etanol/farmacologia , Núcleo Accumbens/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos
19.
Neuropharmacology ; 79: 679-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24467847

RESUMO

Idiopathic or alcohol-induced increases in the expression and function of the Group1 metabotropic glutamate receptor subtype 1 (mGluR1) within the extended amygdala are theorized to contribute to an individual's propensity to consume excessive amounts of alcohol. In the past, the detailed study of the functional relevance of mGluR1 for alcoholism-related behaviors in animal models was hampered by the poor solubility and non-specific side effects of available inhibitors; however, the advent of the highly potent and soluble mGluR1 negative allosteric modulator JNJ-16259685 [(3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] has instigated a re-examination of the role for this mGluR subtype in mediating the behavioral effects of alcohol. In this regard, systemic pretreatment with JNJ-16259685 was proven effective at reducing alcohol reinforcement and motivation for the drug. mGluR1 is a Gαq/o-coupled receptor, the stimulation of which activates phospholipase C (PLC). Thus, the present study investigated potential neuroanatomical substrates and intracellular molecules involved in the ability of JNJ-16259685 to reduce alcohol intake. JNJ-16259685 (0-30 pg/side) was infused into the shell subregion of the nucleus accumbens (NAC) of C57BL/6J and Homer2 knock-out (KO) mice, either alone or in combination with the PLC inhibitor U-73122 (5.8 fg/side). Alcohol intake was then assessed under Drinking-in-the-Dark (DID) procedures. Intra-NAC JNJ-16259685 infusion dose-dependently reduced alcohol consumption by C57BL/6J mice; this effect was not additive with that produced by U-73122, nor was it present in Homer2 KO animals. These data provide novel evidence in support of a critical role for mGluR1-PLC signaling, scaffolded by Homer2, within the NAC shell, in maintaining alcohol consumption under limited access procedures. Such findings have relevance for both the pharmacotherapeutics and pharmacogenetics of risky alcohol drinking and alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Fosfolipases Tipo C/metabolismo , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Etanol/administração & dosagem , Etanol/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação/efeitos dos fármacos , Motivação/fisiologia , Pirrolidinonas/farmacologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Reforço Psicológico , Sacarose/administração & dosagem , Fosfolipases Tipo C/antagonistas & inibidores
20.
Neuropsychopharmacology ; 39(2): 435-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23966068

RESUMO

Despite the fact that binge alcohol drinking (intake resulting in blood alcohol concentrations (BACs) 80 mg% within a 2-h period) is the most prevalent form of alcohol-use disorders (AUD), a large knowledge gap exists regarding how this form of AUD influences neural circuits mediating alcohol reinforcement. The present study employed integrative approaches to examine the functional relevance of binge drinking-induced changes in glutamate receptors, their associated scaffolding proteins and certain signaling molecules within the central nucleus of the amygdala (CeA). A 30-day history of binge alcohol drinking (for example, 4-5 g kg(-1) per 2 h(-1)) elevated CeA levels of mGluR1, GluN2B, Homer2a/b and phospholipase C (PLC) ß3, without significantly altering protein expression within the adjacent basolateral amygdala. An intra-CeA infusion of mGluR1, mGluR5 and PLC inhibitors all dose-dependently reduced binge intake, without influencing sucrose drinking. The effects of co-infusing mGluR1 and PLC inhibitors were additive, whereas those of coinhibiting mGluR5 and PLC were not, indicating that the efficacy of mGluR1 blockade to lower binge intake involves a pathway independent of PLC activation. The efficacy of mGluR1, mGluR5 and PLC inhibitors to reduce binge intake depended upon intact Homer2 expression as revealed through neuropharmacological studies of Homer2 null mutant mice. Collectively, these data indicate binge alcohol-induced increases in Group1 mGluR signaling within the CeA as a neuroadaptation maintaining excessive alcohol intake, which may contribute to the propensity to binge drink.


Assuntos
Tonsila do Cerebelo/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/genética , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/genética , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Proteínas de Transporte/genética , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...