Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 164: 107318, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595517

RESUMO

The advent of optically pumped magnetometer-based magnetoencephalography (OPM-MEG) has introduced new tools for neuroscience and clinical research. As it is still under development, the achievable performance of OPM-MEG remains to be tested, particularly in terms of source localization accuracy, which can be influenced by various factors, including software and hardware aspects. A feasible approach to comprehensively test the performance of the OPM-MEG system is to utilize a phantom that simulates the actual electrophysiological properties of the head while ensuring the precise locations of dipole sources. However, conventional water or dry phantoms can only simulate a single-sphere head model. In this work, a more realistic three-layer phantom was designed and fabricated. The proposed phantom included the scalp, skull, and cortex tissues of the head, as well as the simulated dipole sources. The scalp and cortex tissues were simulated using an electrolyte solution, while the dipole source was constructed from a coaxial cable. All main structures in the phantom were produced using 3D printing techniques, making the phantom easy to manufacture. The fabricated phantom was tested on a 36-channel OPM-MEG system, and the results showed that the dipole source inside the phantom could generate a magnetic field distribution on the scalp that was close to its theoretical values. The average source localization accuracy of 5.51 mm verified the effectiveness of the designed phantom and the performance of our OPM-MEG system. This work provides an effective test platform for OPM-MEG.


Assuntos
Córtex Cerebral , Magnetoencefalografia , Imagens de Fantasmas , Campos Magnéticos , Couro Cabeludo
2.
Brain Topogr ; 36(3): 350-370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046041

RESUMO

Magnetoencephalography (MEG) is a noninvasive functional neuroimaging modality but highly susceptible to environmental interference. Signal space separation (SSS) is a method for improving the SNR to separate the MEG signals from external interference. The origin and truncation values of SSS significantly affect the SSS performance. The origin value fluctuates with respect to the helmet array, and determining the truncation values using the traversal method is time-consuming; thus, this method is inappropriate for optically pumped magnetometer (OPM) systems with flexible array designs. Herein, an automatic optimization method for the SSS parameters is proposed. Virtual sources are set inside and outside the brain to simulate the signals of interest and interference, respectively, via forward model, with the sensor array as prior information. The objective function is determined as the error between the signals from simulated sources inside the brain and the SSS reconstructed signals; thus, the optimized parameters are solved inversely by minimizing the objective function. To validate the proposed method, a simulation analysis and MEG auditory-evoked experiments were conducted. For an OPM sensor array, this method can precisely determine the optimized origin and truncation values of the SSS simultaneously, and the auditory-evoked component, for example, N100, can be accurately located in the temporal cortex. The proposed optimization procedure outperforms the traditional method with regard to the computation time and accuracy, simplifying the SSS process in signal preprocessing and enhancing the performance of SSS denoising.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Simulação por Computador , Neuroimagem Funcional
3.
IEEE Trans Med Imaging ; 42(9): 2706-2713, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37015113

RESUMO

The advent of optically pumped magnetometers (OPMs) facilitates the development of on-scalp magnetoencephalography (MEG). In particular, the triaxial OPM emerged recently, making simultaneous measurements of all three orthogonal components of vector fields possible. The detection of triaxial magnetic fields improves the interference suppression capability and achieves higher source localization accuracy using fewer sensors. The source localization accuracy of MEG is based on the accurate co-registration of MEG and MRI. In this study, we proposed a triaxial co-registration method according to combined principal component analysis and iterative closest point algorithms for use of a flexible cap. A reference phantom with known sensor positions and orientations was designed and constructed to evaluate the accuracy of the proposed method. Experiments showed that the average co-registered position errors of all sensors were approximately 1 mm and average orientation errors were less than 2.5° in the X -and Y orientations and less than 1.6° in the Z orientation. Furthermore, we assessed the influence of co-registration errors on the source localization using simulations. The average source localization error of approximately 1 mm reflects the effectiveness of the co-registration method. The proposed co-registration method facilitates future applications of triaxial sensors on flexible caps.


Assuntos
Encéfalo , Magnetoencefalografia , Magnetoencefalografia/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Couro Cabeludo , Algoritmos
4.
iScience ; 25(10): 105177, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238897

RESUMO

The emergence of the optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has led to new developments in MEG technology. The source imaging results of different magnetic source imaging (MSI) methods show considerable differences, which makes it difficult for researchers to choose an appropriate method. This study assessed time-domain MSI methods implemented in the Brainstorm, FieldTrip, and SPM12 toolboxes using simulations. We proposed using a metric, variational free energy under the Bayesian framework, as an indicator to evaluate source imaging results because it does not require the ground truth of sources but uses the fitness of the measurement data. Our simulations demonstrated the effectiveness of the variational free energy in indicating the quality of the source reconstruction results. We then applied each MSI method to the real OPM-MEG experimental data. We aimed to highlight the characteristics of each method and provide references for researchers choosing an appropriate MSI method.

5.
Front Neurosci ; 16: 984036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188451

RESUMO

Magnetoencephalography (MEG) based on optically pumped magnetometers (OPM-MEG) has shown better flexibility in sensor configuration compared with the conventional superconducting quantum interference devices-based MEG system while being better suited for all-age groups. However, this flexibility presents challenges for the co-registration of MEG and magnetic resonance imaging (MRI), hindering adoption. This study presents a toolbox called OMMR, developed in Matlab, that facilitates the co-registration step for researchers and clinicians. OMMR integrates the co-registration methods of using the electromagnetic digitization system and two types of optical scanners (the structural-light and laser scanner). As the first open-source co-registration toolbox specifically for OPM-MEG, the toolbox aims to standardize the co-registration process and set the ground for future applications of OPM-MEG.

6.
IEEE Trans Biomed Eng ; 69(10): 3131-3141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35320085

RESUMO

OBJECTIVE: Magnetoencephalography (MEG) is a non-invasive technique that measures the magnetic fields of brain activity. In particular, a new type of optically pumped magnetometer (OPM)-based wearable MEG system has been developed in recent years. Source localization in MEG can provide signals and locations of brain activity. However, conventional source localization methods face the difficulty of accurately estimating multiple sources. The present study presented a new parametric method to estimate the number of sources and localize multiple sources. In addition, we applied the proposed method to a constructed wearable OPM-MEG system. METHODS: We used spatial clustering of the dipole spatial distribution to detect sources. The spatial distribution of dipoles was obtained by segmenting the MEG data temporally into slices and then estimating the parameters of the dipoles on each data slice using the particle swarm optimization algorithm. Spatial clustering was performed using the spatial-temporal density-based spatial clustering of applications with a noise algorithm. The performance of our approach for detecting multiple sources was compared with that of four typical benchmark algorithms using the OPM-MEG sensor configuration. RESULTS: The simulation results showed that the proposed method had the best performance for detecting multiple sources. Moreover, the effectiveness of the method was verified by a multimodel sensory stimuli experiment on a real constructed 31-channel OPM-MEG. CONCLUSION: Our study provides an effective method for the detection of multiple sources. SIGNIFICANCE: With the improvement of the source localization methods, MEG may have a wider range of applications in neuroscience and clinical research.


Assuntos
Magnetoencefalografia , Dispositivos Eletrônicos Vestíveis , Encéfalo , Mapeamento Encefálico/métodos , Análise por Conglomerados , Magnetoencefalografia/métodos
7.
iScience ; 25(2): 103752, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35118364

RESUMO

In recent years, optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has shown potential for analyzing brain activity. It has a flexible sensor configuration and comparable sensitivity to conventional SQUID-MEG. We constructed a 32-channel OPM-MEG system and used it to measure cortical responses to median and ulnar nerve stimulations. Traditional magnetic source imaging methods tend to blur the spatial extent of sources. Accurate estimation of the spatial size of the source is important for studying the organization of brain somatotopy and for pre-surgical functional mapping. We proposed a new method called variational free energy-based spatial smoothing estimation (FESSE) to enhance the accuracy of mapping somatosensory cortex responses. A series of computer simulations based on the OPM-MEG showed better performance than the three types of competing methods under different levels of signal-to-noise ratios, source patch sizes, and co-registration errors. FESSE was then applied to the source imaging of the OPM-MEG experimental data.

8.
Front Neurosci ; 15: 706785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483827

RESUMO

Magnetoencephalography (MEG) can non-invasively measure the electromagnetic activity of the brain. A new type of MEG, on-scalp MEG, has attracted the attention of researchers recently. Compared to the conventional SQUID-MEG, on-scalp MEG constructed with optically pumped magnetometers is wearable and has a high signal-to-noise ratio. While the co-registration between MEG and magnetic resonance imaging (MRI) significantly influences the source localization accuracy, co-registration error requires assessment, and quantification. Recent studies have evaluated the co-registration error of on-scalp MEG mainly based on the surface fit error or the repeatability error of different measurements, which do not reflect the true co-registration error. In this study, a three-dimensional-printed reference phantom was constructed to provide the ground truth of MEG sensor locations and orientations relative to MRI. The co-registration performances of commonly used three devices-electromagnetic digitization system, structured-light scanner, and laser scanner-were compared and quantified by the indices of final co-registration errors in the reference phantom and human experiments. Furthermore, the influence of the co-registration error on the performance of source localization was analyzed via simulations. The laser scanner had the best co-registration accuracy (rotation error of 0.23° and translation error of 0.76 mm based on the phantom experiment), whereas the structured-light scanner had the best cost performance. The results of this study provide recommendations and precautions for researchers regarding selecting and using an appropriate device for the co-registration of on-scalp MEG and MRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...