Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 718: 149931, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723415

RESUMO

Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.


Assuntos
Herpesvirus Humano 1 , Nicotinamida Fosforribosiltransferase , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Terapia Viral Oncolítica/métodos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Herpesvirus Humano 1/genética , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T CD8-Positivos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Feminino
2.
Biochem Biophys Res Commun ; 698: 149546, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266314

RESUMO

The low clinical response rate of checkpoint blockades, such as PD-1 and CTLA-4, highlighted the requirements of agonistic antibodies to boost optimal T cell responses. OX40, a co-stimulatory receptor on the T cells, plays a crucial role in promoting T cell survival and differentiation. However, the clinical efficacy of anti-OX40 agonistic antibodies was unimpressive. To explore the mechanism underlying the action of anti-OX40 agonists to improve the anti-tumor efficacy, we analyzed the dynamic changes of tumor-infiltrating immune cells at different days post-treatments using single-cell RNA-sequencing (scRNA-seq). In this study, we found that tumor-infiltrating regulatory T (Treg) cells were reduced after two rounds of anti-OX40 treatment, but the increase of infiltration and activation of CD8+ effector T cells, as well as M1 polarization in the tumor were only observed after three rounds of treatments. Moreover, our group first analyzed the antitumor effect of anti-OX40 treatments on regulating the macrophages and discovered the dynamic changes of vascular endothelial growth factor (VEGF) and CD40 signaling pathways on macrophages, indicating their possibility to being potential combination targets to improve the anti-OX40 agonists efficacy. The combination of VEGFR inhibitors or anti-CD40 agonist antibody with anti-OX40 agonists exhibited more remarkable inhibition of tumor growth. Therefore, the mechanism-driven combination of anti-OX40 agonists with VEGFR inhibitors or anti-CD40 agonists represented promising strategies.


Assuntos
Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular , Anticorpos , Imunoterapia , Macrófagos
3.
Theranostics ; 13(12): 4016-4029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554264

RESUMO

Rationale: The resistance of pancreatic ductal adenocarcinoma (PDAC) to immunotherapies is caused by the immunosuppressive tumor microenvironment (TME) and dense extracellular matrix. Currently, the efficacy of an isolated strategy targeting stromal desmoplasia or immune cells has been met with limited success in the treatment of pancreatic cancer. Oncolytic virus (OV) therapy can remodel the TME and damage tumor cells either by directly killing them or by enhancing the anti-tumor immune response, which holds promise for the treatment of PDAC. This study aimed to investigate the therapeutic effect of OX40L-armed OV on PDAC and to elucidate the underlying mechanisms. Methods: Murine OX40L was inserted into herpes simplex virus-1 (HSV-1) to construct OV-mOX40L. Its expression and function were assessed using reporter cells, cytopathic effect, and immunogenic cell death assays. The efficacy of OV-mOX40L was then evaluated in a KPC syngeneic mouse model. Tumor-infiltrating immune and stromal cells were analyzed using flow cytometry and single-cell RNA sequencing to gain insight into the mechanisms of oncolytic virotherapy. Results: OV-mOX40L treatment delayed tumor growth in KPC tumor-bearing C57BL/6 mice. It also boosted the tumor-infiltrating CD4+ T cell response, mitigated cytotoxic T lymphocyte (CTL) exhaustion, and reduced the number of regulatory T cells. The treatment of OV-mOX40L reprogrammed macrophages and neutrophils to a more pro-inflammatory anti-tumor state. In addition, the number of myofibroblastic cancer-associated fibroblasts (CAF) was reduced after treatment. Based on single-cell sequencing analysis, OV-mOX40L, in combination with anti-IL6 and anti-PD-1, significantly extended the lifespan of PDAC mice. Conclusion: OV-mOX40L converted the immunosuppressive tumor immune microenvironment to a more activated state, remodeled the stromal matrix, and enhanced T cell response. OV-mOX40L significantly prolonged the survival of PDAC mice, either as a monotherapy or in combination with synergistic antibodies. Thus, this study provides a multimodal therapeutic strategy for pancreatic cancer treatment.


Assuntos
Carcinoma Ductal Pancreático , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Animais , Camundongos , Microambiente Tumoral , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas
4.
Virus Res ; 323: 198979, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36283533

RESUMO

Oncolytic viruses are an emerging cancer treatment modality with promising results in clinical trials. The new generation of oncolytic viruses are genetically modified to enhance virus selectivity for tumor cells and allow local expression of therapeutic genes in tumors. The traditional technique for viral genome engineering based on homologous recombination using a bacterial artificial chromosome (BAC) system is laborious and time-consuming. With the advent of the CRISPR/Cas9 system, the efficiency of gene editing in human cells and other organisms has dramatically increased. In this report, we successfully applied the CRISPR/Cas9 technique to construct an HSV-based oncolytic virus, where the ICP34.5 coding region was replaced with the therapeutic genes murine interleukin 12 (IL12, p40-p35) and C-X-C motif chemokine ligand 11 (CXCL11), and ICP47 gene was deleted. The combination of IL12 and CXCL11 in oncolytic viruses showed considerable promise in colorectal cancer (CRC) treatment. Overall, our study describes genetic modification of the HSV-1 genome using the CRISPR/Cas9 system and provides evidence from principle studies for engineering of the HSV genome to express foreign genes.

5.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086948

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers worldwide. Despite the promising outcome of immune checkpoint inhibitors and agonist antibody therapies in different malignancies, PDAC exhibits high resistance due to its immunosuppressive tumor microenvironment (TME). Ameliorating the TME is thus a rational strategy for PDAC therapy. The intratumoral application of oncolytic herpes simplex virus-1 (oHSV) upregulates pro-inflammatory macrophages and lymphocytes in TME, and enhances the responsiveness of PDAC to immunotherapy. However, the antitumor activity of oHSV remains to be maximized. The aim of this study is to investigate the effect of the CD40L armed oHSV on the tumor immune microenvironment, and ultimately prolong the survival of the PDAC mouse model. METHODS: The membrane-bound form of murine CD40L was engineered into oHSV by CRISPR/Cas9-based gene editing. oHSV-CD40L induced cytopathic effect and immunogenic cell death were determined by microscopy and flow cytometry. The expression and function of oHSV-CD40L was assessed by reporter cell assay. The oHSV-CD40L was administrated intratumorally to the immune competent syngeneic PDAC mouse model, and the leukocytes in TME and tumor-draining lymph node were analyzed by multicolor flow cytometry. Intratumoral cytokines were determined by ELISA. RESULTS: Intratumoral application of oHSV-CD40L efficiently restrained the tumor growth and prolonged the survival of the PDAC mouse model. In TME, oHSV-CD40L-treated tumor accommodated more maturated dendritic cells (DCs), which in turn activated T helper 1 and cytotoxic CD8+ T cells in an interferon-γ-dependent and interleukin-12-dependent manner. In contrast, the regulatory T cells were significantly reduced in TME by oHSV-CD40L treatment. Repeated dosing and combinational therapy extended the lifespan of PDAC mice. CONCLUSION: CD40L-armed oncolytic therapy endues TME with increased DCs maturation and DC-dependent activation of cytotoxic T cells, and significantly prolongs the survival of the model mice. This study may lead to the understanding and development of oHSV-CD40L as a therapy for PDAC in synergy with immune checkpoint blockade.


Assuntos
Ligante de CD40/administração & dosagem , Carcinoma Ductal Pancreático/terapia , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Simplexvirus , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Pancreáticas/imunologia
6.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117053

RESUMO

Currently, high-throughput approaches are lacking in the isolation of antibodies with functional readouts beyond simple binding. This situation has impeded the next generation of cancer immunotherapeutics, such as bispecific T cell engager (BiTE) antibodies or agonist antibodies against costimulatory receptors, from reaching their full potential. Here, we developed a highly efficient droplet-based microfluidic platform combining a lentivirus transduction system that enables functional screening of millions of antibodies to identify potential hits with desired functionalities. To showcase the capacity of this system, functional antibodies for CD40 agonism with low frequency (<0.02%) were identified with two rounds of screening. Furthermore, the versatility of the system was demonstrated by combining an anti-Her2 × anti-CD3 BiTE antibody library with functional screening, which enabled efficient identification of active anti-Her2 × anti-CD3 BiTE antibodies. The platform could revolutionize next-generation cancer immunotherapy drug development and advance medical research.

7.
Theranostics ; 11(4): 1901-1917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408788

RESUMO

Rationale: Fc engineering has become the focus of antibody drug development. The current mutagenesis and in silico protein design methods are confined by the limited throughput and high cost, while the high-throughput phage display and yeast display technologies are not suitable for screening glycosylated Fc variants. Here we developed a mammalian cell display-based Fc engineering platform. Methods: By using mammalian cell display and next generation sequencing, we screened millions of Fc variants for optimized affinity and specificity for FcγRIIIa or FcγRIIb. The identified Fc variants with improved binding to FcγRIIIa were substituted into trastuzumab and rituximab and the effector function of antibodies were examined in the PBMC-based assay. On the other hand, the identified Fc variants with selectively enhanced FcγRIIb binding were applied to CD40 agonist antibody and the activities of the antibodies were measured on different cell assays. The immunostimulatory activity of CD40 antibodies was also evaluated by OVA-specific CD8+ T cell response model in FcγR/CD40-humanized mice. Results: Using this approach, we screened millions of Fc variant and successfully identified several novel Fc variants with enhanced FcγRIIIa or FcγRIIb binding. These identified Fc variants displayed a dramatic increase in antibody-dependent cellular cytotoxicity in PBMC-based assay. Novel variants with selectively enhanced FcγRIIb binding were also identified. CD40 agonist antibodies substituted with these Fc variants displayed activity more potent than the parental antibody in the in vitro and in vivo models.Conclusions: This approach increased the throughput of Fc variant screening from thousands to millions magnitude, enabled screening variants containing multiple mutations and could be integrated with glycoengineering technology, represents an ideal platform for Fc engineering. The initial efforts demonstrated the capability of the platform and the novel Fc variants could be substituted into nearly any antibody for the next generation of antibody therapeutics.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias da Mama/tratamento farmacológico , Fragmentos Fc das Imunoglobulinas/imunologia , Leucócitos Mononucleares/imunologia , Receptores de IgG/metabolismo , Trastuzumab/farmacologia , Animais , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Receptores de IgG/imunologia , Células Tumorais Cultivadas
8.
Mol Ther ; 29(2): 744-761, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33130310

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the major type of pancreatic malignancy with very poor prognosis. Despite the promising results of immune checkpoint inhibitors (ICIs) in some solid tumors, immunotherapy is less effective for PDAC due to its immunosuppressive tumor microenvironment (TME). In this report, we established an immunocompetent syngeneic PDAC model and investigated the effect of oncolytic herpes simplex virus-1 (oHSV) on the composition of TME immune cells. The oHSV treatment significantly reduced tumor burden and prolonged the survival of tumor-bearing mice. Further, by single cell RNA sequencing (scRNA-seq) and multicolor fluorescence-activated cell sorting (FACS) analysis, we demonstrated that oHSV administration downregulated tumor-associated macrophages (TAMs), especially the anti-inflammatory macrophages, and increased the percentage of tumor-infiltrating lymphocytes, including activated cytotoxic CD8+ T cells and T helper (Th)1 cells. Besides, the combination of oHSV and immune checkpoint modulators extended the lifespan of the tumor-bearing mice. Overall, our data suggested that oHSV reshapes the TME of PDAC by boosting the immune activity and leads to improved responsiveness of PDAC to immunotherapy.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Interações entre Hospedeiro e Microrganismos/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Simplexvirus/genética , Microambiente Tumoral/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos
9.
Biochem Biophys Res Commun ; 511(4): 787-793, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30833082

RESUMO

Vav1 is a guanine nucleotide exchange factor (GEF) predominantly expressed in hematopoietic cells, and functions in the development and antigen-stimulated response of lymphocytes. Burkitt's lymphoma (BL) is characterized as transformed B cell lymphoma, and is highly associated with Epstein-Barr virus (EBV). EBV nuclear antigen 1 (EBNA1) is the only viral protein expressed across all three types of latency and essential for the persistence of EBV genome. It is not clear yet how EBNA1 contributes to the growth advantage of latently infected cells such as in EBV+ lymphoma B cells. Here, we reported that Vav1 interacts with EBNA1 via its C-terminal SH3 domain. This interaction suppresses the expression of a pro-apoptotic Bcl-2 family member, Bim, resulting in the resistance of the BL cells to apoptotic inductions. Our data uncovered Vav1 as a novel target for EBNA1, and suggested a pro-survival role of Vav1 in the pathogenesis of EBV associated BLs.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Linfoma de Burkitt/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Mapas de Interação de Proteínas
10.
Biochem Biophys Res Commun ; 509(4): 954-959, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30648553

RESUMO

Venom peptides are an excellent source of pharmacologically active molecules for ion channels that have been considered as promising drug targets. However, mining venoms that interact with ion channel remains challenging. Previously an autocrine based high throughput selection system was developed to screen venom peptide library but the method includes repetitious selection rounds that may cause loss of valuable hits. To simplify the selection process, next generation sequencing was employed to directly identify the positive hits after a single round of selection. The advantage of the improved system was demonstrated by the discovery of 3 novel Kv1.3 targeting venom peptides among which Kappa-thalatoxin-Tas2a is a potent Kv1.3 antagonist. Therefore, this simplified method is efficient to identify novel venom peptides that target ion channels.


Assuntos
Descoberta de Drogas , Canal de Potássio Kv1.3/antagonistas & inibidores , Peptídeos/análise , Venenos de Escorpião/química , Animais , Comunicação Autócrina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Escorpiões/patogenicidade
11.
J Lipid Res ; 59(12): 2287-2296, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309895

RESUMO

Production of 25-hydroxycholesterol (25HC), a potent inhibitor of viral infection, is catalyzed by cholesterol 25-hydroxylase (CH25H). We previously reported that 25HC induced CH25H expression in a liver X receptor (LXR)-dependent manner, implying that LXR can play an important role in antiviral infection. In this study, we determined that activation of LXR by 25HC or synthetic ligands [T0901317 (T317) or GW3965] inhibited infection of herpes simplex virus type 1 (HSV-1) or MLV-(VSV)-GFP in HepG2 cells or RAW 264.7 macrophages. Genetic deletion of LXRα, LXRß, or CH25H expression in HepG2 cells by CRISPR/Cas9 method increased cell susceptibility to HSV-1 infection and attenuated the inhibition of LXR on viral infection. Lack of interferon (IFN)-γ expression also increased cell susceptibility to viral infection. However, it attenuated, but did not block, the inhibition of LXR on HSV-1 infection. In addition, expression of CH25H, but not IFN-γ, was inversely correlated to cell susceptibility to viral infection and the antiviral actions of LXR. Metabolism of 25HC into 25HC-3-sulfate (25HC3S) by cholesterol sulfotransferase-2B1b moderately reduced the antiviral actions of 25HC because 25HC3S is a weaker inhibitor of HSV-1 infection than 25HC. Furthermore, administration of T317 to BALB/c mice reduced HSV-1 growth in mouse tissues. Taken together, we demonstrate an antiviral system of 25HC with involvement of LXR activation, interaction between CH25H and IFN-γ, and 25HC metabolism.


Assuntos
Hidroxicolesteróis/metabolismo , Receptores X do Fígado/metabolismo , Animais , Western Blotting , Sistemas CRISPR-Cas/genética , Células Hep G2 , Herpesvirus Humano 1/metabolismo , Humanos , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Sulfotransferases/metabolismo
13.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045990

RESUMO

The γ134.5 gene of herpes simplex virus 1 (HSV-1) encodes a virulence factor that promotes viral pathogenesis. Although it perturbs TANK-binding kinase 1 (TBK1) in the complex network of innate immune pathways, the underlying mechanism is obscure. Here we report that HSV-1 γ134.5 targets stimulator of interferon genes (STING) in the intracellular DNA recognition pathway that regulates TBK1 activation. In virus-infected cells the γ134.5 protein associates with and inactivates STING, which leads to downregulation of interferon regulatory factor 3 (IRF3) and IFN responses. Importantly, HSV-1 γ134.5 disrupts translocation of STING from the endoplasmic reticulum to Golgi apparatus, a process necessary to prime cellular immunity. Deletion of γ134.5 or its amino-terminal domain from HSV-1 abolishes the observed inhibitory activities. Consistently, an HSV mutant that lacks functional γ134.5 replicated less efficiently in STING+/+ than in STING-/- mouse embryonic fibroblasts. Moreover, reconstituted expression of human STING in the STING-/- cells activated IRF3 and reduced viral growth. These results suggest that control of the DNA sensing pathway by γ134.5 is advantageous to HSV infection.IMPORTANCE Viral inhibition of innate immunity contributes to herpes simplex virus pathogenesis. Although this complex process involves multiple factors, the underlying events remain unclear. We demonstrate that an HSV virulence factor γ134.5 precludes the activation of STING, a central adaptor in the intracellular DNA sensing pathway. Upon HSV infection, this viral protein engages with and inactivates STING. Consequently, it compromises host immunity and facilitates HSV replication. These observations uncover an HSV mechanism that is likely to mediate viral virulence.


Assuntos
Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Proteínas de Membrana/antagonistas & inibidores , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Regulação para Baixo , Deleção de Genes , Teste de Complementação Genética , Herpesvirus Humano 1/imunologia , Humanos , Fator Regulador 3 de Interferon/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Virais/genética , Fatores de Virulência/genética
14.
Protein Eng Des Sel ; 31(11): 427-436, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096267

RESUMO

Single-chain variable fragment (scFv) is the most common format for phage display antibody library. The isolated scFvs need to be reformatted to full-length IgGs for further characterization. High throughput reformatting of scFv to IgG without disrupting VH-VL pairing is of great demanding for exhaustive screening of all antibodies in IgG format. Herein, we developed a strategy based on the overlap extension PCR in emulsion to reformat scFv to IgG while maintain the accuracy and complexity of variable region pairing. Using CD40 as an example target, we reformatted phage display derived CD40 binding scFv library to IgG mammalian display library and isolated high affinity CD40 binding IgGs. This robust and reliable antibody reformatting approach could be integrated into any phage display based antibody drug discovery.


Assuntos
Imunoglobulina G/genética , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Reação em Cadeia da Polimerase , Anticorpos de Cadeia Única/imunologia
15.
J Biophotonics ; 10(2): 286-293, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26847091

RESUMO

Mitochondrial research is important to the study of ageing, apoptosis, and metabolic diseases. Over the years, mitochondria have been studied with stimulation by chemical agents in a global manner for basic and applied research. This approach lacks of precision and accuracy in terms of spatial and temporal resolution. Here we demonstrate a direct and well-defined photostimulation targeting on single mitochondrial tubular structure using a tightly-focused femtosecond (fs) laser that could precisely activate mitochondria at single tubule level to show restorable fragmentation and subsequent recovery after tens of seconds. In these two processes, a series of mitochondrial reactive oxygen species (mROS) flashes was observed and found critical to the mitochondrial fragmentation. Meanwhile, transient openings of mitochondrial permeability transition pores (mPTP) were seen with oscillations of mitochondrial membrane potential. These activities were crucial for the recovery through scavenging the mROS. Without the feedback mechanisms, the fragmented mitochondria could not return back to their original tubular structure. These interesting observations show that photostimulation by fs laser is an active, precise, clean and well-defined approach to dissect the role of mitochondria in normal physiology and different kinds of diseases.


Assuntos
Lasers , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Células HeLa , Humanos
16.
J Virol ; 90(22): 10414-10422, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630226

RESUMO

Herpes simplex virus 1 (HSV-1) remodels nuclear membranes during virus egress. Although the UL31 and UL34 proteins control nucleocapsid transit in infected cells, the molecular interactions required for their function are unclear. Here we report that the γ134.5 gene product of HSV-1 facilitates nucleocapsid release to the cytoplasm through bridging the UL31/UL34 complex, cellular p32, and protein kinase C. Unlike wild-type virus, an HSV mutant devoid of γ134.5 or its amino terminus is crippled for viral growth and release. This is attributable to a defect in virus nuclear egress. In infected cells, wild-type virus recruits protein kinase C to the nuclear membrane and triggers its activation, whereas the γ134.5 mutants fail to exert such an effect. Accordingly, the γ134.5 mutants are unable to induce phosphorylation and reorganization of lamin A/C. When expressed in host cells γ134.5 targets p32 and protein kinase C. Meanwhile, it communicates with the UL31/UL34 complex through UL31. Deletion of the amino terminus from γ134.5 disrupts its activity. These results suggest that disintegration of the nuclear lamina mediated by γ134.5 promotes HSV replication. IMPORTANCE: HSV nuclear egress is a key step that determines the outcome of viral infection. While the nuclear egress complex mediates capsid transit across the nuclear membrane, the regulatory components are not clearly defined in virus-infected cells. We report that the γ134.5 gene product, a virulence factor of HSV-1, facilitates nuclear egress cooperatively with cellular p32, protein kinase C, and the nuclear egress complex. This work highlights a viral mechanism that may contribute to the pathogenesis of HSV infection.


Assuntos
Herpesvirus Humano 1/metabolismo , Lamina Tipo A/metabolismo , Fosforilação/fisiologia , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Animais , Capsídeo/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virologia , Células HeLa , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/virologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/virologia , Proteínas Nucleares/metabolismo , Nucleocapsídeo/metabolismo , Proteína Quinase C/metabolismo , Células Vero , Montagem de Vírus/fisiologia
17.
J Biol Chem ; 290(25): 15670-15678, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25907557

RESUMO

Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Proteínas Virais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Herpes Simples/genética , Herpes Simples/patologia , Herpesvirus Humano 1/genética , Humanos , Evasão da Resposta Imune/genética , Interleucina-2/genética , Interleucina-2/imunologia , Células Jurkat , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Antígenos de Linfócitos T , Transdução de Sinais/genética , Linfócitos T/patologia , Linfócitos T/virologia , Fator 6 Associado a Receptor de TNF/genética , Proteínas Virais/genética
18.
Biochem Biophys Res Commun ; 456(1): 434-9, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25482447

RESUMO

Parthenolide (PTL) is a sesquiterpene lactone isolated from feverfew and exhibits potent antitumor activity against various cancers. Many studies indicate that PTL treatment leads to apoptosis, however, the mechanism has not been defined. Here, we observed that cells underwent autophagy shortly after PTL treatment. Inhibition of autophagy by knocking out autophagy associated gene atg5 blocked PTL-induced apoptosis. Surprisingly, PTL decreased the level of translation initiation factor eIF4E binding protein 1 (4E-BP1) in correlation with autophagy. Ectopic expression or shRNA knockdown of 4E-BP1 further verified the effect of 4E-BP1 on PTL-induced autophagy. Meanwhile, PTL elevated the cellular reactive oxygen species (ROS) which located upstream of the depletion of 4E-BP1, and contributed to the consequent autophagy. This study revealed 4E-BP1 as a trigger for PTL-induced autophagy and may lead to therapeutic strategy to enhance the efficacy of anticancer drugs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Fosfoproteínas/metabolismo , Sesquiterpenos/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos , Fibroblastos/metabolismo , Células HEK293 , Células HL-60 , Células HeLa , Humanos , Camundongos , Fagossomos/metabolismo , Fosforilação/efeitos dos fármacos , Plasmídeos , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
J Biol Chem ; 289(52): 35795-805, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25355318

RESUMO

As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mapeamento de Interação de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Vero , Liberação de Vírus , Receptor de Lamina B
20.
Cell Signal ; 26(10): 2202-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24880064

RESUMO

Vav proteins are guanine nucleotide exchange factors (GEFs) that activate a group of small G proteins (GTPases). Vav1 is predominantly expressed in hematopoietic cells, whereas Vav2 and Vav3 are ubiquitously distributed in almost all human tissues. All three Vav proteins contain conserved structural motifs and associate with a variety of cellular activities including proliferation, migration, and survival. Previous observation with Jurkat leukemia T cells showed that Vav1 possessed anti-apoptotic activity by enhancing Bcl-2 transcription. However the mechanism has not been unveiled. Here, we explored the effectors of Vav1 in promoting Bcl-2 expression in Jurkat cells and revealed that Rac2-Akt was specifically evoked by the expression of Vav1, but not Vav2 or Vav3. Although all three Vav isoforms existed in Jurkat cells, Rac2 was distinguishably activated by Vav1 and that led to enhanced Bcl-2 expression and cell survival. Akt was modulated downstream of Vav1-Rac2, and the activation of Akt was indispensable in the enhanced transcription of Bcl-2. Intriguingly, neither Vav2 nor Vav3 was able to activate Rac2-Akt pathway as determined by gene silencing approach. Our data illustrated a unique role of Vav1 in T leukemia survival by selectively triggering Rac2-Akt axis and elevating the expression of anti-apoptotic Bcl-2.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Apoptose , Células HEK293 , Humanos , Células Jurkat , Leucemia/metabolismo , Leucemia/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-vav/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-vav/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...