Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893250

RESUMO

Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h-1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h-1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h-1 (>150,000 cells min-1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability.

2.
Anal Chem ; 95(16): 6740-6747, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37040369

RESUMO

Contemporary findings in the field of insulator-based electrokinetics have demonstrated that in systems under the influence of direct current (DC) fields, dielectrophoresis (DEP) is not the main electrokinetic mechanism responsible for particle manipulation but rather the sum of electroosmosis, linear and nonlinear electrophoresis. Recent microfluidic studies have brought forth a methodology capable of experimentally estimating the nonlinear electrophoretic mobility of colloidal particles. This methodology, however, is limited to particles that fit two conditions: (i) the particle charge has the same sign as the channel wall charge and (ii) the magnitude of the particle ζ-potential is lower than that of the channel wall. The present work aims to expand upon this methodology by including particles whose ζ-potential has a magnitude larger than that of the wall, referred to as "type 2" particles, as well as to report findings on particles that appear to still be under the influence of the linear electrophoretic regime even at extremely high electric fields (∼6000 V/cm), referred to as "type 3" particles. Our findings suggest that both particle size and charge are key parameters in the determination of nonlinear electrophoretic properties. Type 2 microparticles were all found to be small (diameter ∼ 1 µm) and highly charged, with ζ-potentials above -60 mV; in contrast, type 3 microparticles were all large with ζ-potentials between -40 and -50 mV. However, it was also hypothesized that other nonconsidered parameters could be influencing the results, especially at higher electric fields (>3000 V/cm). The present work also aims to identify the current limitations in the experimental determination of µEP,NL and propose a framework for future work to address the current gaps in the evolving topic of nonlinear electrophoresis of colloidal particles.

3.
Lab Chip ; 21(23): 4596-4607, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34739022

RESUMO

Insulator-based microfluidic devices are attractive for handling biological samples due to their simple fabrication, low-cost, and efficiency in particle manipulation. However, their widespread application is limited by the high operation voltages required to achieve particle trapping. We present a theoretical, numerical, and experimental study that demonstrates these voltages can be significantly reduced (to sub-100 V) in direct-current insulator-based electrokinetic (DC-iEK) devices for micron-sized particles. To achieve this, we introduce the concept of the amplification factor-the fold-increase in electric field magnitude due to the presence of an insulator constriction-and use it to compare the performance of different microchannel designs and to direct our design optimization process. To illustrate the effect of using constrictions with smooth and sharp features on the amplification factor, geometries with circular posts and semi-triangular posts were used. These were theoretically approximated in two different systems of coordinates (bipolar and elliptic), allowing us to provide, for the first time, explicit electric field amplification scaling laws. Finite element simulations were performed to approximate the 3D insulator geometries and provide a parametric study of the effect of changing different geometrical features. These simulations were used to predict particle trapping voltages for four different single-layer microfluidic devices using two particle suspensions (2 and 6.8 µm in size). The general agreement between our models demonstrates the feasibility of using the amplification factor, in combination with nonlinear electrokinetic theory, to meet the prerequisites for the development of portable DC-iEK microfluidic systems.


Assuntos
Técnicas Analíticas Microfluídicas , Eletricidade , Eletroforese , Dispositivos Lab-On-A-Chip , Microfluídica , Tamanho da Partícula
4.
Anal Chem ; 92(19): 12871-12879, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32894016

RESUMO

The classic theory of direct-current (DC) insulator-based dielectrophoresis (iDEP) considers that, in order to elicit particle trapping, dielectrophoretic (DEP) velocity counterbalances electrokinetic (EK) motion, that is, electrophoresis (EP) and electro-osmotic flow (EOF). However, the particle velocity DEP component requires empirical correction factors (sometimes as high as 600) to account for experimental observations, suggesting the need for a refined model. Here, we show that, when applied to particle suspensions, a high-magnitude DC uniform electric field induces nonlinear particle velocities, leading to particle flow reversal beyond a critical field magnitude, referred to as the EK equilibrium condition. We further demonstrate that this particle motion can be described through an exploratory induced-charge EP nonlinear model. The model predictions were validated under an insulator-based microfluidic platform demonstrating predictive particle trapping for three different particle sizes (with an estimation error < 10%, not using correction factors). Our findings suggest that particle motion and trapping in "DC-iDEP" devices are dominated by EP and EOF, rather than by DEP effects.

5.
Polymers (Basel) ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560281

RESUMO

Polymer solutions with different concentrations of SU-8 2002/poly(ethylene) glycol/tetrabutyl ammonium tetrafluoroborate (SU-8/PEO/TBATFB) were electrospun in a low-voltage near-field electrospinning platform (LVNFES) at different velocities. Their diameters were related to the concentration contents as well as to their Deborah (De) numbers, which describes the elasticity of the polymer solution under determined operating conditions. We found a direct correlation between the concentration of PEO/TBATFB, the De and the diameter of the fibers. Fibers with diameters as thin as 465 nm can be achieved for De ≈ 1.

6.
Mater Sci Eng C Mater Biol Appl ; 109: 110629, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228934

RESUMO

Based on the concept of LEGO toys, a fiber probe analytical platform (FPAP) was developed as a powerful diagnostic tool offering higher sensitivity in detection of infectious agents compared to established methods. Using the form and the function of LEGO toys, this protocol describes a fiber-based, 96-well plate, which suspends a new class of chemically-designed, electrospun fibers within the assay. This clamping strategy allows both sides of the developed fiber mats to interact with biomolecules within the assay thus benefiting from the tailored chemical and physical properties of these fiber-based bioreceptors in attracting the biomolecules to the surface. The fabrication method of FPAP involves one-step electrospinning of the chemically designed fibers, 3D printing of the LEGO-like probing segments, and assembly of the device followed by ELISA procedure. FPAP follows the same principles of operation as that of a conventional enzyme linked immunosorbent assay (ELISA), therefore, it can be run by lab technicians, expert in ELISA. FPAP was used for early diagnosis of Dengue fever and provided an 8-fold higher sensitivity while the limit of detection (LOD) was recorded to be in femto-gram per milliliter range which is significantly low when compared to other existing techniques or conventional assay. This platform allows different types of paper/fiber bio-receptive platforms to be incorporated within the design that promises simultaneous recognition of multiple infectious agents.


Assuntos
Anticorpos Antivirais , Vírus da Dengue/imunologia , Dengue , Imunoglobulina G , Impressão Tridimensional , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Dengue/diagnóstico , Dengue/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Limite de Detecção
7.
Microsyst Nanoeng ; 5: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636928

RESUMO

The introduction of two-photon polymerization (TPP) into the area of Carbon Micro Electromechanical Systems (C-MEMS) has enabled the fabrication of three-dimensional glassy carbon nanostructures with geometries previously unattainable through conventional UV lithography. Pyrolysis of TPP structures conveys a characteristic reduction of feature size-one that should be properly estimated in order to produce carbon microdevices with accuracy. In this work, we studied the volumetric shrinkage of TPP-derived microwires upon pyrolysis at 900 °C. Through this process, photoresist microwires thermally decompose and shrink by as much as 75%, resulting in glassy carbon nanowires with linewidths between 300 and 550 nm. Even after the thermal decomposition induced by the pyrolysis step, the linewidth of the carbon nanowires was found to be dependent on the TPP exposure parameters. We have also found that the thermal stress induced during the pyrolysis step not only results in axial elongation of the nanowires, but also in buckling in the case of slender carbon nanowires (for aspect ratios greater than 30). Furthermore, we show that the calculated residual mass fraction that remains after pyrolysis depends on the characteristic dimensions of the photoresist microwires, a trend that is consistent with several works found in the literature. This phenomenon is explained through a semi-empirical model that estimates the feature size of the carbon structures, serving as a simple guideline for shrinkage evaluation in other designs.

8.
Electrophoresis ; 40(10): 1408-1416, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30883810

RESUMO

Insulator-based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non-uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode-based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom-built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Teóricos , Temperatura
9.
Anal Chem ; 90(7): 4310-4315, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29528220

RESUMO

Insulator-based dielectrophoresis (iDEP) is a microfluidic technique used for particle analysis in a wide array of applications. Significant efforts are dedicated to improve iDEP systems by reducing voltage requirements. This study assesses how the performance of an iDEP system, in terms of particle trapping, depends on the number of insulating obstacles longitudinally present in the microchannel. In analogy with Kirchhoff's loop rule, iDEP systems were analyzed as a series combination of electrical resistances, where the equivalent resistance of the post array is composed by a number of individual resistors (columns of insulating posts). It was predicted by the COMSOL model, and later confirmed by experimental results, that reducing the number of columns of insulating posts significantly affects the electric field distribution, decreasing the required voltage to dielectrophoretically trap particles within the post array. As an application, it was demonstrated that decreasing the number of columns in the post array allows for the dielectrophoretic trapping of nanometer-scale particles at voltages well below those reported in previous similar iDEP systems. These findings illustrate how the iDEP channel configuration can be customized for specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...