Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 16(8): 930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32533134

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Chem Biol ; 15(11): 1120-1128, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636435

RESUMO

Characterizing the adaptive landscapes that encompass the emergence of novel enzyme functions can provide molecular insights into both enzymatic and evolutionary mechanisms. Here, we combine ancestral protein reconstruction with biochemical, structural and mutational analyses to characterize the functional evolution of methyl-parathion hydrolase (MPH), an organophosphate-degrading enzyme. We identify five mutations that are necessary and sufficient for the evolution of MPH from an ancestral dihydrocoumarin hydrolase. In-depth analyses of the adaptive landscapes encompassing this evolutionary transition revealed that the mutations form a complex interaction network, defined in part by higher-order epistasis, that constrained the adaptive pathways available. By also characterizing the adaptive landscapes in terms of their functional activities towards three additional organophosphate substrates, we reveal that subtle differences in the polarity of the substrate substituents drastically alter the network of epistatic interactions. Our work suggests that the mutations function collectively to enable substrate recognition via subtle structural repositioning.


Assuntos
Epistasia Genética , Hidrolases/metabolismo , Metil Paration/metabolismo , Xenobióticos/metabolismo
3.
Elife ; 82019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30719972

RESUMO

Genetic variation among orthologous proteins can cause cryptic phenotypic properties that only manifest in changing environments. Such variation may impact the evolvability of proteins, but the underlying molecular basis remains unclear. Here, we performed comparative directed evolution of four orthologous metallo-ß-lactamases toward a new function and found that different starting genotypes evolved to distinct evolutionary outcomes. Despite a low initial fitness, one ortholog reached a significantly higher fitness plateau than its counterparts, via increasing catalytic activity. By contrast, the ortholog with the highest initial activity evolved to a less-optimal and phenotypically distinct outcome through changes in expression, oligomerization and activity. We show how cryptic molecular properties and conformational variation of active site residues in the initial genotypes cause epistasis, that could lead to distinct evolutionary outcomes. Our work highlights the importance of understanding the molecular details that connect genetic variation to protein function to improve the prediction of protein evolution.


Assuntos
Adaptação Biológica , Evolução Molecular , Variação Genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Evolução Molecular Direcionada , Expressão Gênica , Hidrólise , Conformação Proteica , Multimerização Proteica , beta-Lactamases/química
4.
J Biol Chem ; 294(8): 2903-2912, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30567740

RESUMO

The ability to persist in the absence of growth triggered by low oxygen levels is a critical process for the survival of mycobacterial species in many environmental niches. MSMEG_5243 (fsq), a gene of unknown function in Mycobacterium smegmatis, is up-regulated in response to hypoxia and regulated by DosRDosS/DosT, an oxygen- and redox-sensing two-component system that is highly conserved in mycobacteria. In this communication, we demonstrate that MSMEG_5243 is a flavin-sequestering protein and henceforth refer to it as Fsq. Using an array of biochemical and structural analyses, we show that Fsq is a member of the diverse superfamily of flavin- and deazaflavin-dependent oxidoreductases (FDORs) and is widely distributed in mycobacterial species. We created a markerless deletion mutant of fsq and demonstrate that fsq is required for cell survival during hypoxia. Using fsq deletion and overexpression, we found that fsq enhances cellular resistance to hydrogen peroxide treatment. The X-ray crystal structure of Fsq, solved to 2.7 Å, revealed a homodimeric organization with FAD bound noncovalently. The Fsq structure also uncovered no potential substrate-binding cavities, as the FAD is fully enclosed, and electrochemical studies indicated that the Fsq:FAD complex is relatively inert and does not share common properties with electron-transfer proteins. Taken together, our results suggest that Fsq reduces the formation of reactive oxygen species (ROS) by sequestering free FAD during recovery from hypoxia, thereby protecting the cofactor from undergoing autoxidation to produce ROS. This finding represents a new paradigm in mycobacterial adaptation to hypoxia.


Assuntos
Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Hipóxia , Mycobacterium/crescimento & desenvolvimento , Estresse Oxidativo , Oxigênio/metabolismo , Substâncias Protetoras/metabolismo , Proteínas de Bactérias/genética , Catálise , Cristalografia por Raios X , Transporte de Elétrons , Modelos Moleculares , Mycobacterium/metabolismo , Oxirredução , Conformação Proteica
5.
Nat Commun ; 9(1): 3900, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254369

RESUMO

Developments in computational chemistry, bioinformatics, and laboratory evolution have facilitated the de novo design and catalytic optimization of enzymes. Besides creating useful catalysts, the generation and iterative improvement of designed enzymes can provide valuable insight into the interplay between the many phenomena that have been suggested to contribute to catalysis. In this work, we follow changes in conformational sampling, electrostatic preorganization, and quantum tunneling along the evolutionary trajectory of a designed Kemp eliminase. We observe that in the Kemp Eliminase KE07, instability of the designed active site leads to the emergence of two additional active site configurations. Evolutionary conformational selection then gradually stabilizes the most efficient configuration, leading to an improved enzyme. This work exemplifies the link between conformational plasticity and evolvability and demonstrates that residues remote from the active sites of enzymes play crucial roles in controlling and shaping the active site for efficient catalysis.


Assuntos
Domínio Catalítico , Desenho Assistido por Computador , Evolução Molecular Direcionada , Enzimas/química , Cristalografia por Raios X , Estabilidade Enzimática , Enzimas/genética , Enzimas/metabolismo , Isoxazóis/química , Isoxazóis/metabolismo , Modelos Químicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Eletricidade Estática , Termodinâmica
6.
Acta Chim Slov ; 65(2): 372-379, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29993111

RESUMO

The mononuclear Ni(II) complexes [Ni(en)2(H2O)2](MAA)2 (1) and [Ni(pn)2(MAA)2] (2), where MAA, en and pn are methacrylate, ethylendiamine and 1,3-propylendiamine, respectively, have been synthesized and characterized by elemental analysis, FT-IR and UV�Vis spectroskopy. Structures of the complexes have been determined by single-crystal X-ray diffraction analyses. In the nickel(II) complexes 1 and 2 nickel(II) ion is six-coordinate and has a distorted octahedral geometry. Ni(II) is bonded to four nitrogen atoms of the two diamines and additionally to two oxygen atoms of aqua ligand in 1, and two oxygen atoms of methacrylate ligands in 2. The theoretical geometries of the studied compounds have been calculated by means of density functional theory (DFT) at the B3LYP/6-311+G(d,p)/LanL2DZ level and considering effective core potential (ECP). The comparison of the results indicates that the employed DFT method yields good agreement with experimental data.

7.
Nat Chem Biol ; 14(6): 542-547, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686357

RESUMO

The emergence of enzymes through the neofunctionalization of noncatalytic proteins is ultimately responsible for the extraordinary range of biological catalysts observed in nature. Although the evolution of some enzymes from binding proteins can be inferred by homology, we have a limited understanding of the nature of the biochemical and biophysical adaptations along these evolutionary trajectories and the sequence in which they occurred. Here we reconstructed and characterized evolutionary intermediate states linking an ancestral solute-binding protein to the extant enzyme cyclohexadienyl dehydratase. We show how the intrinsic reactivity of a desolvated general acid was harnessed by a series of mutations radiating from the active site, which optimized enzyme-substrate complementarity and transition-state stabilization and minimized sampling of noncatalytic conformations. Our work reveals the molecular evolutionary processes that underlie the emergence of enzymes de novo, which are notably mirrored by recent examples of computational enzyme design and directed evolution.


Assuntos
Escherichia coli/enzimologia , Prefenato Desidratase/química , Prefenato Desidratase/genética , Proteínas de Transporte , Catálise , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Evolução Molecular , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese , Mutação , Oligonucleotídeos/genética , Filogenia , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Especificidade por Substrato
8.
Org Lett ; 20(9): 2770-2773, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29676922

RESUMO

The palladium-catalyzed Ullmann cross-coupling of ß-iodoenones and ß-iodoacrylates such as 5 (X = I) with o-halonitroarenes and o-iodobenzonitriles including 2 affords products such as compound 7. These can be engaged in a range of reductive cyclization reactions leading to heterocyclic frameworks such as 3,4-benzomorphan derivative 43.

9.
Artigo em Inglês | MEDLINE | ID: mdl-29610197

RESUMO

The antifungal drug 5-flucytosine (5FC), a derivative of the nucleobase cytosine, is licensed for the treatment of fungal diseases; however, it is rarely used as a monotherapeutic to treat Aspergillus infection. Despite being potent against other fungal pathogens, 5FC has limited activity against Aspergillus fumigatus when standard in vitro assays are used to determine susceptibility. However, in modified in vitro assays where the pH is set to pH 5, the activity of 5FC increases significantly. Here we provide evidence that fcyB, a gene that encodes a purine-cytosine permease orthologous to known 5FC importers, is downregulated at pH 7 and is the primary factor responsible for the low efficacy of 5FC at pH 7. We also uncover two transcriptional regulators that are responsible for the repression of fcyB and, consequently, mediators of 5FC resistance, the CCAAT binding complex (CBC) and the pH regulatory protein PacC. We propose that the activity of 5FC might be enhanced by the perturbation of factors that repress fcyB expression, such as PacC or other components of the pH-sensing machinery.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Flucitosina/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Aspergillus fumigatus/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
10.
Biochemistry ; 56(41): 5512-5525, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28929747

RESUMO

Carboxylesterase (CBE)-mediated metabolic resistance to organophosphate and carbamate insecticides is a major problem for the control of insect disease vectors, such as the mosquito. The most common mechanism involves overexpression of CBEs that bind to the insecticide with high affinity, thereby sequestering them before they can interact with their target. However, the absence of any structure for an insecticide-sequestering CBE limits our understanding of the molecular basis for this process. We present the first structure of a CBE involved in sequestration, Cqestß21, from the mosquito disease vector Culex quinquefasciatus. Lysine methylation was used to obtain the crystal structure of Cqestß21, which adopts a canonical α/ß-hydrolase fold that has high similarity to the target of organophosphate and carbamate insecticides, acetylcholinesterase. Sequence similarity networks of the insect carboxyl/cholinesterase family demonstrate that CBEs associated with metabolic insecticide resistance across many species share a level of similarity that distinguishes them from a variety of other classes. This is further emphasized by the structural similarities and differences in the binding pocket and active site residues of Cqestß21 and other insect carboxyl/cholinesterases. Stopped-flow and steady-state inhibition studies support a major role for Cqestß21 in organophosphate resistance and a minor role in carbamate resistance. Comparison with another isoform associated with insecticide resistance, Cqestß1, showed both enzymes have similar affinity to insecticides, despite 16 amino acid differences between the two proteins. This provides a molecular understanding of pesticide sequestration by insect CBEs and could facilitate the design of CBE-specific inhibitors to circumvent this resistance mechanism in the future.


Assuntos
Carboxilesterase/metabolismo , Culex/enzimologia , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Modelos Moleculares , Substituição de Aminoácidos , Animais , Sítios de Ligação , Carbamatos/química , Carbamatos/metabolismo , Carboxilesterase/química , Carboxilesterase/genética , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Insetos/química , Proteínas de Insetos/genética , Inseticidas/química , Cinética , Ligantes , Conformação Molecular , Mutação , Organofosfatos/química , Organofosfatos/metabolismo , Filogenia , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Umbeliferonas/química , Umbeliferonas/metabolismo
11.
J Org Chem ; 82(15): 7869-7886, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28671462

RESUMO

Syntheses of certain di- and mono-oxygenated derivatives (e.g., 2 and 3, respectively) and analogues (e.g., 4, a D-ring monoseco-analogue of 2) of both the (-)- and (+)-enantiomeric forms of the alkaloid galanthamine [(-)-1] are reported. All have been assessed for their capacities to inhibit acetylcholine esterase but, in contrast to the predictions from docking studies, none bind strongly to this enzyme.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Galantamina/farmacologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Galantamina/síntese química , Galantamina/química , Conformação Molecular , Simulação de Acoplamento Molecular , Estereoisomerismo , Relação Estrutura-Atividade
12.
J Nat Prod ; 80(7): 2088-2093, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28722413

RESUMO

A total synthesis of compound 3 from d-(-)-tartaric acid is reported, thereby establishing that the structure, including relative stereochemistry, originally assigned to the cyclic carbonate-containing natural product aspergillusol B is correct.


Assuntos
Carbonatos/química , Tartaratos/química , Tirosina/análogos & derivados , Tirosina/síntese química , Produtos Biológicos/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo , Tirosina/química
13.
J Org Chem ; 82(15): 8008-8022, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28671826

RESUMO

A series of enantiomerically pure bicyclo[2.2.2]octenones, including the lactone-annulated system 26, has been prepared by engaging derivatives of an enzymatically derived and homochiral cis-1,2-dihydrocatechol in inter- or intra-molecular Diels-Alder reactions. Systems such as 26 readily participate in photochemically promoted oxa-di-π-methane rearrangement or 1,3-acyl migration processes to give products such as diquinane 34 or mixtures of cyclobutanone 36 and cyclopropane 38, respectively.

14.
J Org Chem ; 82(8): 4328-4335, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28304164

RESUMO

A cross-coupling/reductive cyclization protocol has been employed in a unified approach to all four carbolines. So, for example, the 2-nitropyridine 8, which is readily prepared through an efficient palladium-catalyzed Ullmann cross-coupling reaction, is reductively cyclized under conventional conditions to give 6,7,8,9-tetrahydro-α-carboline that is itself readily aromatized to give α-carboline (1).

15.
J Org Chem ; 82(8): 4336-4341, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28304168

RESUMO

A total synthesis of the racemic modification, (±)-2, of the tazettine-type alkaloid 3-O-demethylmacronine is described. The key steps are an intramolecular Alder-ene (IMAE) reaction and a lactam-to-lactone rearrangement of tetracycle 13, a compound that embodies the haemanthidine alkaloid framework.

16.
J Org Chem ; 82(8): 4148-4159, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28225623

RESUMO

The title natural products 2-7 have been prepared by reductive cyclization of the relevant 2-arylcyclohex-2-en-1-one (e.g. 20) to the corresponding tetrahydrocarbazole and dehydrogenation (aromatization) of this to give the target carbazole (e.g. 4). Compounds such as 20 were prepared using a palladium-catalyzed Ullmann cross-coupling reaction between the appropriate 2-iodocyclohex-2-en-1-one and o-halonitrobenzene.

18.
Biochemistry ; 55(45): 6304-6313, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27768291

RESUMO

The desolvation of ionizable residues in the active sites of enzymes and the subsequent effects on catalysis and thermostability have been studied in model systems, yet little about how enzymes can naturally evolve to include active sites with highly reactive and desolvated charges is known. Variants of triazine hydrolase (TrzN) with significant differences in their active sites have been isolated from different bacterial strains: TrzN from Nocardioides sp. strain MTD22 contains a catalytic glutamate residue (Glu241) that is surrounded by hydrophobic and aromatic second-shell residues (Pro214 and Tyr215), whereas TrzN from Nocardioides sp. strain AN3 has a noncatalytic glutamine residue (Gln241) at an equivalent position, surrounded by hydrophilic residues (Thr214 and His215). To understand how and why these variants have evolved, a series of TrzN mutants were generated and characterized. These results show that desolvation by second-shell residues increases the pKa of Glu241, allowing it to act as a general acid at neutral pH. However, significant thermostability trade-offs are required to incorporate the ionizable Glu241 in the active site and to then enclose it in a hydrophobic microenvironment. Analysis of high-resolution crystal structures shows that there are almost no structural changes to the overall configuration of the active site due to these mutations, suggesting that the changes in activity and thermostability are purely based on the altered electrostatics. The natural evolution of these enzyme isoforms provides a unique system in which to study the fundamental process of charged residue desolvation in enzyme catalysis and its relative contribution to the creation and evolution of an enzyme active site.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Hidrolases/metabolismo , Triazinas/metabolismo , Actinobacteria/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática , Evolução Molecular , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Hidrolases/química , Hidrolases/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Estrutura Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Temperatura , Triazinas/química
19.
Nat Chem Biol ; 12(11): 944-950, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27618189

RESUMO

Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular , Hidrolases de Triester Fosfórico/metabolismo , Pseudomonas/enzimologia , Biocatálise , Hidrolases de Éster Carboxílico/química , Hidrolases de Triester Fosfórico/química , Conformação Proteica
20.
PLoS Pathog ; 12(7): e1005775, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27438727

RESUMO

Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis.


Assuntos
Aspergilose/metabolismo , Aspergillus fumigatus/metabolismo , Fator de Ligação a CCAAT/metabolismo , Farmacorresistência Fúngica/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Antifúngicos , Azóis , Imunoprecipitação da Cromatina , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/metabolismo , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Esteróis/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...