Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551812

RESUMO

Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant anti-tumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABARAP is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in high-risk MM patients. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent anti-tumor T cell response. Low GABARAP was independently associated with shorter MM patient survival and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, like bortezomib, with an autophagy inducer, like rapamycin, may improve patient outcomes in MM, where low GABARAP in the form of del(17p) is common and leads to worse outcomes.

4.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310997

RESUMO

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Assuntos
Mieloma Múltiplo , Estados Unidos , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Medula Óssea , RNA Interferente Pequeno/genética , Células Endoteliais , Ciclofilina A , Lipídeos , Microambiente Tumoral
5.
Blood ; 141(21): 2599-2614, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630605

RESUMO

PSMD4/Rpn10 is a subunit of the 19S proteasome unit that is involved with feeding target proteins into the catalytic machinery of the 26S proteasome. Because proteasome inhibition is a common therapeutic strategy in multiple myeloma (MM), we investigated Rpn10 and found that it is highly expressed in MM cells compared with normal plasma cells. Rpn10 levels inversely correlated with overall survival in patients with MM. Inducible knockout or knockdown of Rpn10 decreased MM cell viability both in vitro and in vivo by triggering the accumulation of polyubiquitinated proteins, cell cycle arrest, and apoptosis associated with the activation of caspases and unfolded protein response-related pathways. Proteomic analysis revealed that inhibiting Rpn10 increased autophagy, antigen presentation, and the activation of CD4+ T and natural killer cells. We developed an in vitro AlphaScreen binding assay for high-throughput screening and identified a novel Rpn10 inhibitor, SB699551 (SB). Treating MM cell lines, leukemic cell lines, and primary cells from patients with MM with SB decreased cell viability without affecting the viability of normal peripheral blood mononuclear cells. SB inhibited the proliferation of MM cells even in the presence of the tumor-promoting bone marrow milieu and overcame proteasome inhibitor (PI) resistance without blocking the 20S proteasome catalytic function or the 19S deubiquitinating activity. Rpn10 blockade by SB triggered MM cell death via similar pathways as the genetic strategy. In MM xenograft models, SB was well tolerated, inhibited tumor growth, and prolonged survival. Our data suggest that inhibiting Rpn10 will enhance cytotoxicity and overcome PI resistance in MM, providing the basis for further optimization studies of Rpn10 inhibitors for clinical application.


Assuntos
Mieloma Múltiplo , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteômica , Leucócitos Mononucleares/metabolismo , Proteínas de Transporte/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA
6.
Blood Cancer Discov ; 4(2): 150-169, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468984

RESUMO

Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE: Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Fosfatidilinositol 3-Quinases/genética , Linfoma Difuso de Grandes Células B/genética , Linfócitos B
8.
Sci Adv ; 8(17): eabm3108, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486727

RESUMO

Dysregulated Wnt/ß-catenin signaling is implicated in the pathogenesis of many human cancers, including colorectal cancer (CRC), making it an attractive clinical target. With the aim of inhibiting oncogenic Wnt activity, we developed a high-throughput screening AlphaScreen assay to identify selective small-molecule inhibitors of the interaction between ß-catenin and its coactivator BCL9. We identified a compound that consistently bound to ß-catenin and specifically inhibited in vivo native ß-catenin/BCL9 complex formation in CRC cell lines. This compound inhibited Wnt activity, down-regulated expression of the Wnt/ß-catenin signature in gene expression studies, disrupted cholesterol homeostasis, and significantly reduced the proliferation of CRC cell lines and tumor growth in a xenograft mouse model of CRC. This study has therefore identified a specific small-molecule inhibitor of oncogenic Wnt signaling, which may have value as a probe for functional studies and has important implications for the development of novel therapies in patients with CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Animais , Colesterol , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Homeostase , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
9.
Cancer Res ; 81(24): 6117-6130, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34686499

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by disordered DNA methylation, suggesting these epigenetic changes might play a critical role in disease onset and progression. The methyltransferase DNMT3A is a key regulator of DNA methylation. Although DNMT3A somatic mutations in CLL are rare, we found that low DNMT3A expression is associated with more aggressive disease. A conditional knockout mouse model showed that homozygous depletion of Dnmt3a from B cells results in the development of CLL with 100% penetrance at a median age of onset of 5.3 months, and heterozygous Dnmt3a depletion yields a disease penetrance of 89% with a median onset at 18.5 months, confirming its role as a haploinsufficient tumor suppressor. B1a cells were confirmed as the cell of origin of disease in this model, and Dnmt3a depletion resulted in focal hypomethylation and activation of Notch and Myc signaling. Amplification of chromosome 15 containing the Myc gene was detected in all CLL mice tested, and infiltration of high-Myc-expressing CLL cells in the spleen was observed. Notably, hyperactivation of Notch and Myc signaling was exclusively observed in the Dnmt3a CLL mice, but not in three other CLL mouse models tested (Sf3b1-Atm, Ikzf3, and MDR), and Dnmt3a-depleted CLL were sensitive to pharmacologic inhibition of Notch signaling in vitro and in vivo. Consistent with these findings, human CLL samples with lower DNMT3A expression were more sensitive to Notch inhibition than those with higher DNMT3A expression. Altogether, these results suggest that Dnmt3a depletion induces CLL that is highly dependent on activation of Notch and Myc signaling. SIGNIFICANCE: Loss of DNMT3A expression is a driving event in CLL and is associated with aggressive disease, activation of Notch and Myc signaling, and enhanced sensitivity to Notch inhibition.


Assuntos
DNA Metiltransferase 3A/metabolismo , DNA Metiltransferase 3A/fisiologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Notch/metabolismo , Animais , Antibacterianos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , DNA Metiltransferase 3A/genética , Daptomicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , RNA-Seq , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Blood Cancer Discov ; 2(5): 468-483, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34568832

RESUMO

Proteasome inhibitor bortezomib induces apoptosis in multiple myeloma (MM) cells, and has transformed patient outcome. Using in vitro as well as in vivo immunodeficient and immunocompetent murine MM models, we here show that bortezomib also triggers immunogenic cell death (ICD) characterized by exposure of calreticulin on dying MM cells, phagocytosis of tumor cells by dendritic cells, and induction of MM specific immunity. We identify a bortezomib-triggered specific ICD-gene signature associated with better outcome in two independent MM patient cohorts. Importantly, bortezomib stimulates MM cells immunogenicity via activation of cGAS/STING pathway and production of type-I interferons; and STING agonists significantly potentiate bortezomib-induced ICD. Our studies therefore delineate mechanisms whereby bortezomib exerts immunotherapeutic activity, and provide the framework for clinical trials of STING agonists with bortezomib to induce potent tumor-specific immunity and improve patient outcome in MM.


Assuntos
Mieloma Múltiplo , Animais , Bortezomib/farmacologia , Humanos , Imunidade , Proteínas de Membrana/genética , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Nucleotidiltransferases/genética , Transdução de Sinais
11.
Blood Cancer Discov ; 2(4): 338-353, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34268498

RESUMO

The bone marrow (BM) microenvironment actively promotes multiple myeloma (MM) pathogenesis and therapies targeting both cancer cells and the niche are highly effective. We were interested in identifying novel signaling pathways supporting MM-BM crosstalk. Mutations in the transmembrane receptor Roundabout 1 (ROBO1) were recently identified in MM patients, however their functional consequences are uncertain. Through protein structure-function studies, we discovered that ROBO1 is necessary for MM adhesion to BM stromal and endothelial cells and ROBO1 knock out (KO) compromises BM homing and engraftment in a disseminated mouse model. ROBO1 KO significantly decreases MM proliferation in vitro and intra- and extramedullary tumor growth, in vivo. Mechanistically, ROBO1 C-terminus is cleaved in a ligand-independent fashion and is sufficient to promote MM proliferation. Viceversa, mutants lacking the cytoplasmic domain, including the human-derived G674* truncation, act dominantly negative. Interactomic and RNA sequencing studies suggest ROBO1 may be involved in RNA processing, supporting further studies.


Assuntos
Medula Óssea , Mieloma Múltiplo , Proteínas do Tecido Nervoso , Receptores Imunológicos , Animais , Medula Óssea/metabolismo , Células da Medula Óssea , Células Endoteliais/metabolismo , Humanos , Camundongos , Mieloma Múltiplo/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Microambiente Tumoral/genética , Proteínas Roundabout
12.
Br J Cancer ; 125(4): 582-592, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088988

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a dismal prognosis. There is increasing interest in targeting chromatin regulatory pathways in difficult-to-treat cancers. In preliminary studies, we found that KDM4A (lysine-specific histone demethylase 4) was overexpressed in MPM. METHODS: KDM4A protein expression was determined by immunohistochemistry or immunoblotting. Functional inhibition of KDM4A by targeted knockdown and small molecule drugs was correlated to cell growth using cell lines and a xenograft mouse model. Gene expression profiling was performed to identify KDM4A-dependent signature pathways. RESULTS: Levels of KDM4A were found to be significantly elevated in MPM patients compared to normal mesothelial tissue. Inhibiting the enzyme activity efficiently reduced cell growth in vitro and reduced tumour growth in vivo. KDM4A inhibitor-induced apoptosis was further enhanced by the BH3 mimetic navitoclax. KDM4A expression was associated with pathways involved in cell growth and DNA repair. Interestingly, inhibitors of the DNA damage and replication checkpoint regulators CHK1 (prexasertib) and WEE1 (adavosertib) within the DNA double-strand break repair pathway, cooperated in the inhibition of cell growth. CONCLUSIONS: The results establish a novel and essential role for KDM4A in growth in preclinical models of MPM and identify potential therapeutic approaches to target KDM4A-dependent vulnerabilities.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mesotelioma Maligno/patologia , Regulação para Cima , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Blood ; 137(14): 1905-1919, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33751108

RESUMO

Chromosome 13q deletion [del(13q)], harboring the miR-15a/16-1 cluster, is one of the most common genetic alterations in mature B-cell malignancies, which originate from germinal center (GC) and post-GC B cells. Moreover, miR-15a/16 expression is frequently reduced in lymphoma and multiple myeloma (MM) cells without del(13q), suggesting important tumor-suppressor activity. However, the role of miR-15a/16-1 in B-cell activation and initiation of mature B-cell neoplasms remains to be determined. We show that conditional deletion of the miR-15a/16-1 cluster in murine GC B cells induces moderate but widespread molecular and functional changes including an increased number of GC B cells, percentage of dark zone B cells, and maturation into plasma cells. With time, this leads to development of mature B-cell neoplasms resembling human extramedullary plasmacytoma (EP) as well as follicular and diffuse large B-cell lymphomas. The indolent nature and lack of bone marrow involvement of EP in our murine model resembles human primary EP rather than MM that has progressed to extramedullary disease. We corroborate human primary EP having low levels of miR-15a/16 expression, with del(13q) being the most common genetic loss. Additionally, we show that, although the mutational profile of human EP is similar to MM, there are some exceptions such as the low frequency of hyperdiploidy in EP, which could account for different disease presentation. Taken together, our studies highlight the significant role of the miR-15a/16-1 cluster in the regulation of the GC reaction and its fundamental context-dependent tumor-suppression function in plasma cell and B-cell malignancies.


Assuntos
Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Neoplasias de Plasmócitos/genética , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Deleção Cromossômica , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 13/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/patologia , Camundongos Endogâmicos C57BL , Família Multigênica , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Neoplasias de Plasmócitos/patologia , Plasmócitos/metabolismo , Plasmócitos/patologia , Plasmocitoma/genética , Plasmocitoma/patologia
14.
Cancer Cell ; 39(3): 380-393.e8, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689703

RESUMO

Hotspot mutation of IKZF3 (IKZF3-L162R) has been identified as a putative driver of chronic lymphocytic leukemia (CLL), but its function remains unknown. Here, we demonstrate its driving role in CLL through a B cell-restricted conditional knockin mouse model. Mutant Ikzf3 alters DNA binding specificity and target selection, leading to hyperactivation of B cell receptor (BCR) signaling, overexpression of nuclear factor κB (NF-κB) target genes, and development of CLL-like disease in elderly mice with a penetrance of ~40%. Human CLL carrying either IKZF3 mutation or high IKZF3 expression was associated with overexpression of BCR/NF-κB pathway members and reduced sensitivity to BCR signaling inhibition by ibrutinib. Our results thus highlight IKZF3 oncogenic function in CLL via transcriptional dysregulation and demonstrate that this pro-survival function can be achieved by either somatic mutation or overexpression of this CLL driver. This emphasizes the need for combinatorial approaches to overcome IKZF3-mediated BCR inhibitor resistance.


Assuntos
Linfócitos B/patologia , Fator de Transcrição Ikaros/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Transcrição Gênica/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , NF-kappa B/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genética
15.
Am J Dermatopathol ; 43(1): 63-66, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675473

RESUMO

ABSTRACT: Mycosis fungoides (MF) is primarily characterized by epidermotropic CD3+/CD4+/CD45RO+ memory T cells. CD4/CD8 double-negative MF is an uncommon variant with no presumed prognostic significance. Despite the variability in the clinical course and presentation of MF, most cases behave indolently. About 5% of patients, however, advance to stage IV with visceral organ involvement. Central nervous system metastasis in MF is rare with no known cases of direct central nervous system invasion by MF to date. We report an exceedingly rare locally aggressive case of CD4/CD8 double-negative MF with direct dural invasion and underline pertinent diagnostic challenges encountered in our case.


Assuntos
Dura-Máter/patologia , Neoplasias de Cabeça e Pescoço/patologia , Linfoma Cutâneo de Células T/patologia , Micose Fungoide/patologia , Couro Cabeludo/patologia , Neoplasias Cutâneas/patologia , Adulto , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Dura-Máter/imunologia , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/terapia , Micose Fungoide/genética , Micose Fungoide/imunologia , Micose Fungoide/terapia , Invasividade Neoplásica , Couro Cabeludo/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Resultado do Tratamento
16.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315290

RESUMO

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Assuntos
Carcinogênese/metabolismo , Proliferação de Células , Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Bainha Neural/metabolismo , Transdução de Sinais , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Humanos , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia
17.
Nat Commun ; 11(1): 19, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911584

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer, which despite recent advances in treatment, remains incurable due to molecular heterogeneity of tumor cells. The B-cell lymphoma 9 (BCL9) oncogene functions as a transcriptional co-activator of the Wnt/ß-catenin pathway, which plays critical roles in CRC pathogenesis. Here we have identified a ß-catenin-independent function of BCL9 in a poor-prognosis subtype of CRC tumors characterized by expression of stromal and neural associated genes. In response to spontaneous calcium transients or cellular stress, BCL9 is recruited adjacent to the interchromosomal regions, where it stabilizes the mRNA of calcium signaling and neural associated genes by interacting with paraspeckle proteins. BCL9 subsequently promotes tumor progression and remodeling of the tumor microenvironment (TME) by sustaining the calcium transients and neurotransmitter-dependent communication among CRC cells. These data provide additional insights into the role of BCL9 in tumor pathogenesis and point towards additional avenues for therapeutic intervention.


Assuntos
Neoplasias Colorretais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cálcio/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Ligação Proteica , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
18.
Blood Adv ; 3(21): 3360-3374, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698464

RESUMO

MYD88 L265P is the most common mutation in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) and one of the most frequent in poor-prognosis subtypes of diffuse large B-cell lymphoma (DLBCL). Although inhibition of the mutated MYD88 pathway has an adverse impact on LPL/WM and DLBCL cell survival, its role in lymphoma initiation remains to be clarified. We show that in mice, human MYD88L265P promotes development of a non-clonal, low-grade B-cell lymphoproliferative disorder with several clinicopathologic features that resemble human LPL/WM, including expansion of lymphoplasmacytoid cells, increased serum immunoglobulin M (IgM) concentration, rouleaux formation, increased number of mast cells in the bone marrow, and proinflammatory signaling that progresses sporadically to clonal, high-grade DLBCL. Murine findings regarding differences in the pattern of MYD88 staining and immune infiltrates in the bone marrows of MYD88 wild-type (MYD88WT) and MYD88L265P mice are recapitulated in the human setting, which provides insight into LPL/WM pathogenesis. Furthermore, histologic transformation to DLBCL is associated with acquisition of secondary genetic lesions frequently seen in de novo human DLBCL as well as LPL/WM-transformed cases. These findings indicate that, although the MYD88L265P mutation might be indispensable for the LPL/WM phenotype, it is insufficient by itself to drive malignant transformation in B cells and relies on other, potentially targetable cooperating genetic events for full development of lymphoma.


Assuntos
Substituição de Aminoácidos , Linfócitos B/metabolismo , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Mutação , Fator 88 de Diferenciação Mieloide/genética , Alelos , Animais , Linfócitos B/patologia , Biópsia , Modelos Animais de Doenças , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Gradação de Tumores , Transcriptoma , Macroglobulinemia de Waldenstrom/etiologia , Macroglobulinemia de Waldenstrom/metabolismo , Macroglobulinemia de Waldenstrom/patologia
20.
Cancer Cell ; 35(2): 283-296.e5, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30712845

RESUMO

SF3B1 is recurrently mutated in chronic lymphocytic leukemia (CLL), but its role in the pathogenesis of CLL remains elusive. Here, we show that conditional expression of Sf3b1-K700E mutation in mouse B cells disrupts pre-mRNA splicing, alters cell development, and induces a state of cellular senescence. Combination with Atm deletion leads to the overcoming of cellular senescence and the development of CLL-like disease in elderly mice. These CLL-like cells show genome instability and dysregulation of multiple CLL-associated cellular processes, including deregulated B cell receptor signaling, which we also identified in human CLL cases. Notably, human CLLs harboring SF3B1 mutations exhibit altered response to BTK inhibition. Our murine model of CLL thus provides insights into human CLL disease mechanisms and treatment.


Assuntos
Linfócitos B/imunologia , Senescência Celular , Deleção de Genes , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Neoplasias Experimentais/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Receptores de Antígenos de Linfócitos B/imunologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Processamento Alternativo , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Predisposição Genética para Doença , Instabilidade Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fatores de Processamento de RNA/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...